Câu hỏi:

23/02/2023 179

Đồ thị hàm số \(y = x + 3 + \sqrt {{x^2} + x + 1} \)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = a\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = a \Rightarrow y = a\)là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = - \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = - \infty \) thì \(x = a\) là TCĐ của đồ thị hàm số.

Cách giải:

TXĐ: \(D = R\), do đó đồ thị hàm số không có tiệm cận đứng.

Ta có:

\(\mathop {\lim }\limits_{x \to + \infty } \left( {x + 3 + \sqrt {{x^2} + x + 1} } \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {x.\left( {1 + \frac{3}{x} + \sqrt {1 + \frac{1}{x} + \frac{1}{{{x^2}}}} } \right)} \right) = + \infty \)

\(\mathop {\lim }\limits_{x \to - \infty } \left( {x + 3 + \sqrt {{x^2} + x + 1} } \right) = \mathop {\lim }\limits_{x \to \infty } \frac{{\left( {x + 3 + \sqrt {{x^2} + x + 1} } \right)\left( {x + 3 - \sqrt {{x^2} + x + 1} } \right)}}{{\left( {x + 3 - \sqrt {{x^2} + x + 1} } \right)}}\)

\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{5x + 8}}{{x + 3 - \sqrt {{x^2} + x + 1} }} = \mathop {\lim }\limits_{x \to - \infty } \frac{{5 + \frac{8}{x}}}{{1 + \frac{3}{x} + \sqrt {1 + \frac{1}{x} + \frac{1}{{{x^2}}}} }} = \frac{5}{2}\)

\( \Rightarrow \) Đồ thị hàm số có TCN \(y = \frac{5}{2}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \({x^2} - 3x + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right. \Rightarrow \) TXĐ: \(D = R\backslash \left[ {1;2} \right]\)

Câu 2

Lời giải

Đáp án B

Phương pháp:

\(y = f\left( x \right).g\left( x \right) \Rightarrow y' = f'\left( x \right).g\left( x \right) + f\left( x \right).g'\left( x \right)\)

Cách giải:

\(y = x.\ln x \Rightarrow y = 1.\ln x + x.\frac{1}{x} = \ln x + 1\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP