Câu hỏi:

23/02/2023 1,453

Cho hàm số \(y = \frac{{2x + 1}}{{x + 1}}\) có đồ thị (C). Tiếp tuyến của (C) cắt hai tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của AB là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Viết phương trình tiếp tuyến của (C) tại \(M\left( {{x_0};{y_0}} \right)\).

Xác định giao điểm của tiếp điểm với hai đường tiệm cận và tính độ dài AB. Sử dụng công thức tính độ dài: \(AB = \sqrt {{{\left( {{x_A} - {x_B}} \right)}^2} + {{\left( {{y_A} - {y_B}} \right)}^2}} \)

Sử dụng BĐT Cô-si tìm GTNN của AB.

Cách giải:

Đồ thị hàm số \(y = \frac{{2x + 1}}{{x + 1}}\) có TCĐ là \(x = - 1\) và TCN là \(y = 2\)

Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm \( \Rightarrow {y_0} = \frac{{2{x_0} + 1}}{{{x_0} + 1}}\)

\(y' = \frac{1}{{{{\left( {x + 1} \right)}^2}}} \Rightarrow y'\left( {{x_0}} \right) = \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}}\)

Phương trình tiếp tuyến của (C) tại \(M\left( {{x_0};{y_0}} \right)\) là:

\(y = \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}}.\left( {x - {x_0}} \right) + \frac{{2{x_0} + 1}}{{{x_0} + 1}}\)

Cho \(x = - 1 \Rightarrow y = \frac{{ - 1 - {x_0}}}{{{{\left( {{x_0} + 1} \right)}^2}}} + \frac{{2{x_0} + 1}}{{{x_0} + 1}} = \frac{{2{x_0}}}{{{x_0} + 1}} \Rightarrow A\left( { - 1;\frac{{2{x_0}}}{{{x_0} + 1}}} \right)\)

Cho \(y = 2 \Rightarrow 2 = \frac{{x - {x_0}}}{{{{\left( {{x_0} + 1} \right)}^2}}} + \frac{{2{x_0} + 1}}{{{x_0} + 1}} \Leftrightarrow x - {x_0} + \left( {2{x_0} + 1} \right)\left( {{x_0} + 1} \right) = 2{\left( {{x_0} + 1} \right)^2}\)

\( \Leftrightarrow x - {x_0} + 2x_0^2 + 3{x_0} + 1 = 2x_0^2 + 4{x_0} + 2 \Leftrightarrow x = 2{x_0} + 1 \Rightarrow B\left( {2{x_0} + 1;2} \right)\)

Khi đó: \(AB = \sqrt {{{\left( {2{x_0} + 2} \right)}^2} + {{\left( {\frac{{2{x_0}}}{{{x_0} + 1}} - 2} \right)}^2}} = \sqrt {4{{\left( {{x_0} + 1} \right)}^2} + \frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}}} \)

Áp dụng BĐT Cô-si ta có: \(4{\left( {{x_0} + 1} \right)^2} + \frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}} \ge 2\sqrt {4{{\left( {{x_0} + 1} \right)}^2}.\frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}}} = 8\)

\( \Rightarrow A{B_{\min }} = \sqrt 8 = 2\sqrt 2 \) khi \(4{\left( {{x_0} + 1} \right)^2} = \frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}} \Leftrightarrow {\left( {{x_0} + 1} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = - 2\end{array} \right.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Tập xác định của hàm số \(y = {\log _2}\left( {{x^2} - 3x + 2} \right)\) là:

Lời giải

Đáp án A

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \({x^2} - 3x + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right. \Rightarrow \) TXĐ: \(D = R\backslash \left[ {1;2} \right]\)

Lời giải

Đáp án A

Phương pháp:

Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số \(y = {x^3} - 3x\) và đường thẳng \(y = m\)

Cách giải:

Ta có: \({x^3} - 3x - m = 0 \Leftrightarrow {x^3} - 3x = m\,\,\left( 1 \right)\)

Số nghiệm của phương trình (1) bằng số giao điểm của đồ thị hàm số \(y = {x^3} - 3x\) và đường thẳng \(y = m\)

Quan sát đồ thị hàm số, ta thấy: để đồ thị hàm số \(y = {x^3} - 3x\) cắt đường thẳng \(y = m\) tại 3 điểm phân biệt thì \( - 1 < m < 3\).

Vậy để phương trình đã cho có ba nghiệm phân biệt thì \( - 1 < m < 3\)

Câu 3

Đạo hàm y’(x) của hàm số \(y = x.\ln x\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Khối lập phương ABCD.A’B’C’D’ có độ dài đoạn \(AB' = 2a\). Thể tích của khối đó là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tập hợp tất cả các số thực m để hàm số \(y = {x^3} + 5{x^2} - 4mx - 3\) đồng biến trên R là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay