Cho hàm số \(y = \frac{{2x + 1}}{{x + 1}}\) có đồ thị (C). Tiếp tuyến của (C) cắt hai tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của AB là
Cho hàm số \(y = \frac{{2x + 1}}{{x + 1}}\) có đồ thị (C). Tiếp tuyến của (C) cắt hai tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của AB là
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Viết phương trình tiếp tuyến của (C) tại \(M\left( {{x_0};{y_0}} \right)\).
Xác định giao điểm của tiếp điểm với hai đường tiệm cận và tính độ dài AB. Sử dụng công thức tính độ dài: \(AB = \sqrt {{{\left( {{x_A} - {x_B}} \right)}^2} + {{\left( {{y_A} - {y_B}} \right)}^2}} \)
Sử dụng BĐT Cô-si tìm GTNN của AB.
Cách giải:
Đồ thị hàm số \(y = \frac{{2x + 1}}{{x + 1}}\) có TCĐ là \(x = - 1\) và TCN là \(y = 2\)
Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm \( \Rightarrow {y_0} = \frac{{2{x_0} + 1}}{{{x_0} + 1}}\)
\(y' = \frac{1}{{{{\left( {x + 1} \right)}^2}}} \Rightarrow y'\left( {{x_0}} \right) = \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}}\)
Phương trình tiếp tuyến của (C) tại \(M\left( {{x_0};{y_0}} \right)\) là:
\(y = \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}}.\left( {x - {x_0}} \right) + \frac{{2{x_0} + 1}}{{{x_0} + 1}}\)
Cho \(x = - 1 \Rightarrow y = \frac{{ - 1 - {x_0}}}{{{{\left( {{x_0} + 1} \right)}^2}}} + \frac{{2{x_0} + 1}}{{{x_0} + 1}} = \frac{{2{x_0}}}{{{x_0} + 1}} \Rightarrow A\left( { - 1;\frac{{2{x_0}}}{{{x_0} + 1}}} \right)\)
Cho \(y = 2 \Rightarrow 2 = \frac{{x - {x_0}}}{{{{\left( {{x_0} + 1} \right)}^2}}} + \frac{{2{x_0} + 1}}{{{x_0} + 1}} \Leftrightarrow x - {x_0} + \left( {2{x_0} + 1} \right)\left( {{x_0} + 1} \right) = 2{\left( {{x_0} + 1} \right)^2}\)
\( \Leftrightarrow x - {x_0} + 2x_0^2 + 3{x_0} + 1 = 2x_0^2 + 4{x_0} + 2 \Leftrightarrow x = 2{x_0} + 1 \Rightarrow B\left( {2{x_0} + 1;2} \right)\)
Khi đó: \(AB = \sqrt {{{\left( {2{x_0} + 2} \right)}^2} + {{\left( {\frac{{2{x_0}}}{{{x_0} + 1}} - 2} \right)}^2}} = \sqrt {4{{\left( {{x_0} + 1} \right)}^2} + \frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}}} \)
Áp dụng BĐT Cô-si ta có: \(4{\left( {{x_0} + 1} \right)^2} + \frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}} \ge 2\sqrt {4{{\left( {{x_0} + 1} \right)}^2}.\frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}}} = 8\)
\( \Rightarrow A{B_{\min }} = \sqrt 8 = 2\sqrt 2 \) khi \(4{\left( {{x_0} + 1} \right)^2} = \frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}} \Leftrightarrow {\left( {{x_0} + 1} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = - 2\end{array} \right.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Phương pháp:
Hàm số \(y = {\log _a}f\left( x \right)\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \({x^2} - 3x + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right. \Rightarrow \) TXĐ: \(D = R\backslash \left[ {1;2} \right]\)
Lời giải
Đáp án A
Phương pháp:
Xác định số điểm mà tại đó đạo hàm \(f'\left( x \right)\) đổi dấu.
Cách giải:
\(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{1}{2}\end{array} \right.\)
Trong đó \(f'\left( x \right)\) chỉ đổi dấu tại điểm \(x = \frac{1}{2} \Rightarrow \) Hàm số đã cho có 1 điểm cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.