Câu hỏi:

23/02/2023 249 Lưu

Với giá trị thực nào của tham số m thì đồ thị hàm số \(y = {x^4} - 2m{x^2} + 2m + {m^4}\) có ba điểm cực trị là ba đỉnh của một tam giác đều?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

+) Tìm điều kiện để hàm số có 3 điểm cực trị.

+) Xác định các điểm cực trị của hàm số. Ba điểm cực trị đó luôn tạo thành tam giác cân.

+) Tìm điều kiện để tam giác cân trở thành tam giác đều.

Cách giải:

\(y = {x^4} - 2m{x^2} + 2m + {m^4} \Rightarrow y' = 4{x^3} - 4mx = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right.\)

Để hàm số có 3 điểm cực trị thì \(m > 0\). Khi đó, tọa độ 3 điểm cực trị là:

\(A\left( {0;2m + {m^4}} \right),\,\,B\left( { - \sqrt m ;{m^4} - {m^2} + 2m} \right),\,\,C\left( {\sqrt m ;{m^4} - {m^2} + 2m} \right)\)

Dễ dàng kiểm tra được tam giác ABC cân tại A với mọi \(m > 0\)

Ta có: \(A{B^2} = m + {m^4};\,\,\,B{C^2} = 4m\)

Để \(\Delta ABC\) đều thì \(A{B^2} = B{C^2} \Leftrightarrow A{B^2} = B{C^2} \Leftrightarrow m + {m^4} = 4m \Leftrightarrow {m^4} - 3m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\left( {ktm} \right)\\m = \sqrt[3]{3}\left( {tm} \right)\end{array} \right.\)

Vậy \(m = \sqrt[3]{3}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \({x^2} - 3x + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right. \Rightarrow \) TXĐ: \(D = R\backslash \left[ {1;2} \right]\)

Lời giải

Đáp án A

Phương pháp:

Xác định số điểm mà tại đó đạo hàm \(f'\left( x \right)\) đổi dấu.

Cách giải:

\(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{1}{2}\end{array} \right.\)

Trong đó \(f'\left( x \right)\) chỉ đổi dấu tại điểm \(x = \frac{1}{2} \Rightarrow \) Hàm số đã cho có 1 điểm cực trị.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP