Cho hàm số \(y = m\cot \left( {{x^2}} \right)\). Tập hợp tất cả các giá trị của m thỏa mãn \({m^2} - 4 < 0\) sao cho hàm số đã cho đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\) là
Cho hàm số \(y = m\cot \left( {{x^2}} \right)\). Tập hợp tất cả các giá trị của m thỏa mãn \({m^2} - 4 < 0\) sao cho hàm số đã cho đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\) là
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Hàm số đồng biến trên \(\left( {0;\frac{\pi }{4}} \right) \Leftrightarrow y' \ge 0,\,\,\forall x \in \left( {0;\frac{\pi }{4}} \right)\) và bằng 0 tại hữu hạn điểm trên \(\left( {0;\frac{\pi }{4}} \right)\)
Cách giải:
\(y = m\cot \left( {{x^2}} \right) \Rightarrow y' = m.\frac{{ - 1}}{{{{\sin }^2}\left( {{x^2}} \right)}}.2x = \frac{{ - 2mx}}{{{{\sin }^2}\left( {{x^2}} \right)}}\)
Hàm số đồng biến trên \(\left( {0;\frac{\pi }{4}} \right) \Leftrightarrow \frac{{ - 2mx}}{{{{\sin }^2}\left( {{x^2}} \right)}} \ge 0,\,\,\forall x \in \left( {0;\frac{\pi }{4}} \right)\) và bằng 0 tại hữu hạn điểm trên \(\left( {0;\frac{\pi }{4}} \right)\)
\( \Leftrightarrow - 2m > 0 \Leftrightarrow m < 0\)
Kết hợp điều kiện \({m^2} - 4 < 0 \Leftrightarrow - 2 < m < 2 \Rightarrow m \in \left( { - 2;0} \right)\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Phương pháp:
Hàm số \(y = {\log _a}f\left( x \right)\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \({x^2} - 3x + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right. \Rightarrow \) TXĐ: \(D = R\backslash \left[ {1;2} \right]\)
Lời giải
Đáp án A
Phương pháp:
Xác định số điểm mà tại đó đạo hàm \(f'\left( x \right)\) đổi dấu.
Cách giải:
\(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{1}{2}\end{array} \right.\)
Trong đó \(f'\left( x \right)\) chỉ đổi dấu tại điểm \(x = \frac{1}{2} \Rightarrow \) Hàm số đã cho có 1 điểm cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.