Câu hỏi:

23/02/2023 328

Cho hình chóp S.ABCD đáy ABCD là hình thoi. \(SA = x\left( {0 < x < \sqrt 3 } \right)\) các cạnh còn lại đều bằng 1. Thể tích của khối chóp S.ABCD là

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Cho hình chóp S.ABCD đáy ABCD là hình thoi. SA = x (0 < x < căn bậc hai 3) các cạnh còn lại (ảnh 1)

Phương pháp:

\({V_{S.ABCD}} = 2{V_{S.ABD}}\)

Cách giải:

ABCD là hình thoi \( \Rightarrow \Delta ABD = \Delta CBD \Rightarrow {S_{\Delta ABD}} = {S_{\Delta CBD}}\)

\( \Rightarrow {V_{S.ABCD}} = 2{V_{S.ABD}}\)

Gọi I là trung điểm của SA, O là tâm của hình thoi ABCD.

Ta có: \(\Delta SAD,\,\,\Delta SAB\) là hai tam giác cân lần lượt tại D và B

\( \Rightarrow DI \bot SA,\,\,BI \bot SA \Rightarrow SA \bot \left( {IBD} \right)\)

\({V_{S.ABD}} = {V_{S.IBD}} + {V_{I.ABD}} = \frac{1}{3}.SI.{S_{\Delta IBD}} + \frac{1}{3}.IA.{S_{\Delta IBD}} = \frac{1}{3}.SA.{S_{\Delta IBD}}\)

Tam giác IAD vuông tại I \( \Rightarrow DI = \sqrt {A{D^2} - I{A^2}} = \sqrt {1 - \frac{{{x^2}}}{4}} \)

\( \Rightarrow IB = ID = \sqrt {1 - \frac{{{x^2}}}{4}} \)

IO là đường trung bình của tam giác SAC \( \Rightarrow IO = \frac{{SC}}{2} = \frac{1}{2}\)

Tam giác IBD cân tại I, O là trung điểm của BD \( \Rightarrow IO \bot BD \Rightarrow \Delta IOD\) vuông tại O

\( \Rightarrow OD = \sqrt {I{D^2} - I{O^2}} = \sqrt {1 - \frac{{{x^2}}}{4} - \frac{1}{4}} = \sqrt {\frac{3}{4} - \frac{{{x^2}}}{4}} \Rightarrow BD = \sqrt {3 - {x^2}} \)

Diện tích tam giác IBD: \(S{ & _{IBD}} = \frac{1}{2}.IO.BD = \frac{1}{2}.\frac{1}{2}.\sqrt {3 - {x^2}} = \frac{{\sqrt {3 - {x^2}} }}{4}\)

\( \Rightarrow {V_{S.ABD}} = \frac{1}{2}.SA.{S_{\Delta IBD}} = \frac{1}{3}.x.\frac{{\sqrt {3 - {x^2}} }}{4} = \frac{{x\sqrt {3 - {x^2}} }}{{12}} \Rightarrow {V_{S.ABCD}} = 2{V_{S.ABD}} = \frac{{a\sqrt {3 - {x^2}} }}{6}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập xác định của hàm số \(y = {\log _2}\left( {{x^2} - 3x + 2} \right)\) là:

Xem đáp án » 23/02/2023 8,046

Câu 2:

Đồ thị sau đây là của hàm số \[y = {x^3} - 3x + 1\]. Với giá trị nào của m thì phương trình \({x^3} - 3x - m = 0\) có ba nghiệm phân biệt?

Đồ thị sau đây là của hàm số y = x^3 -3x + 1. Với giá trị nào của m thì phương trình x^3  (ảnh 1)

Xem đáp án » 23/02/2023 3,673

Câu 3:

Khối lập phương ABCD.A’B’C’D’ có độ dài đoạn \(AB' = 2a\). Thể tích của khối đó là

Xem đáp án » 23/02/2023 2,692

Câu 4:

Một người cần đi từ khách sạn A bên bờ biển đến hòn đảo C. Biết rằng khoảng cách từ đảo C đến bờ biển là BC = 10km, khoảng cách từ khách sạn A đến điểm ngắn nhất tính từ đảo C vào bờ là AB = 40km. Người đó có thể đi đường thủy hoặc đi đường bộ rồi đi đường thủy từ khách sạn ra đảo (như hình vẽ dưới đây). Biết kinh phí đi đường thủy là 5 USD/km, kinh phí đi đường bộ là 3 USD/km. Hỏi người đó phải đi đường bộ một đoạn AD bao nhiêu để kinh phí đi từ A đến C nhỏ nhất? (AB vuông góc BC-hình dưới đây)

Một người cần đi từ khách sạn A bên bờ biển đến hòn đảo C. Biết rằng khoảng cách từ đảo C (ảnh 1)

Xem đáp án » 23/02/2023 2,339

Câu 5:

Tập hợp tất cả các số thực m để hàm số \(y = {x^3} + 5{x^2} - 4mx - 3\) đồng biến trên R là

Xem đáp án » 23/02/2023 2,170

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right)\). Khi đó số điểm cực trị của hàm số đã cho là bao nhiêu?

Xem đáp án » 23/02/2023 2,056

Câu 7:

Đạo hàm y’(x) của hàm số \(y = x.\ln x\)

Xem đáp án » 23/02/2023 2,013

Bình luận


Bình luận