Câu hỏi:

23/02/2023 917

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), tam giác ABC vuông tại B. Biết \(SA = a,\,\,AB = b,\,\,BC = c\). Gọi B’, C’ tương ứng là hình chiếu vuông góc của A trên SB, SC. Gọi V, V’ tương ứng là thể tích của các khối chóp S.ABC, S.AB’C’. Khi đó ta có

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Cho hình chóp S.ABC có SA vuông góc (ABC), tam giác ABc vuông tại B. Biết SA = a, AB = b (ảnh 1)

Sử dụng công thức tỉ số thể tích cho khối chóp tam giác (Công thức Simson):

Cho khối chóp S.ABC, các điểm \({A_1},\,{B_1},\,{C_1}\) lần lượt thuộc SA, SB, SC. Khi đó, \(\frac{{{V_{S.{A_1}{B_1}{C_1}}}}}{{{V_{S.ABC}}}} = \frac{{S{A_1}}}{{SA}}.\frac{{S{B_1}}}{{SB}}.\frac{{S{C_1}}}{{SC}}\)

Đáp án C

Phương pháp:

Sử dụng công thức tỉ số thể tích cho khối chóp tam giác (Công thức Simson):

Cho khối chóp S.ABC, các điểm \({A_1},\,{B_1},\,{C_1}\) lần lượt thuộc SA, SB, SC. Khi đó, \(\frac{{{V_{S.{A_1}{B_1}{C_1}}}}}{{{V_{S.ABC}}}} = \frac{{S{A_1}}}{{SA}}.\frac{{S{B_1}}}{{SB}}.\frac{{S{C_1}}}{{SC}}\)

Cách giải:

Cho hình chóp S.ABC có SA vuông góc (ABC), tam giác ABc vuông tại B. Biết SA = a, AB = b (ảnh 2)

Tam giác SAB vuông tại A, AB’ vuông góc SB

\( \Rightarrow SB'.SB = S{A^2} \Rightarrow \frac{{SB'}}{{SB}} = \frac{{S{A^2}}}{{S{B^2}}} = \frac{{{a^2}}}{{{a^2} + {b^2}}}\)

Tam giác ABC vuông tại B

\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {b^2}} \)

Tam giác SAC vuông tại A, AC’ vuông góc SC

\( \Rightarrow SC'.SC = S{A^2} \Rightarrow \frac{{SC'}}{{SC}} = \frac{{S{A^2}}}{{S{C^2}}} = \frac{{{a^2}}}{{{a^2} + {b^2} + {c^2}}}\)

\(\frac{{{V_{S.A'B'C'}}}}{{{S_{S.ABC}}}} = \frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}} = \frac{{{a^2}}}{{{a^2} + {b^2}}}.\frac{{{a^2}}}{{{a^2} + {b^2} + {c^2}}} = \frac{{{a^4}}}{{\left( {{a^2} + {b^2}} \right)\left( {{a^2} + {b^2} + {c^2}} \right)}}\)

Cách giải:

Tam giác SAB vuông tại A, AB’ vuông góc SB

\( \Rightarrow SB'.SB = S{A^2} \Rightarrow \frac{{SB'}}{{SB}} = \frac{{S{A^2}}}{{S{B^2}}} = \frac{{{a^2}}}{{{a^2} + {b^2}}}\)

Tam giác ABC vuông tại B

\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {b^2}} \)

Tam giác SAC vuông tại A, AC’ vuông góc SC

\( \Rightarrow SC'.SC = S{A^2} \Rightarrow \frac{{SC'}}{{SC}} = \frac{{S{A^2}}}{{S{C^2}}} = \frac{{{a^2}}}{{{a^2} + {b^2} + {c^2}}}\)

\(\frac{{{V_{S.A'B'C'}}}}{{{S_{S.ABC}}}} = \frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}} = \frac{{{a^2}}}{{{a^2} + {b^2}}}.\frac{{{a^2}}}{{{a^2} + {b^2} + {c^2}}} = \frac{{{a^4}}}{{\left( {{a^2} + {b^2}} \right)\left( {{a^2} + {b^2} + {c^2}} \right)}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \({x^2} - 3x + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right. \Rightarrow \) TXĐ: \(D = R\backslash \left[ {1;2} \right]\)

Lời giải

Đáp án A

Phương pháp:

Xác định số điểm mà tại đó đạo hàm \(f'\left( x \right)\) đổi dấu.

Cách giải:

\(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{1}{2}\end{array} \right.\)

Trong đó \(f'\left( x \right)\) chỉ đổi dấu tại điểm \(x = \frac{1}{2} \Rightarrow \) Hàm số đã cho có 1 điểm cực trị.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP