Câu hỏi:

23/02/2023 250 Lưu

Khối tứ diện ABCD có cạnh \[AB = CD = a\], độ dài tất cả các cạnh còn lại bằng b, \(\left( {2{b^2} > {a^2}} \right)\). Thể tích V của khối tứ diện đó là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Thể tích khối chóp: \(V = \frac{1}{3}Sh\)

Cách giải:

Khối tứ diện ABCD có cạnh AB = CD = a, độ dài tất cả các cạnh còn lại bằng b, 2b^2 > a^2 (ảnh 1)

Gọi E, F lần lượt là trung điểm của CD, AB. Kẻ AH vuông góc với BE tại H.

Theo đề bài ta có: \(AB = CD = a,\,\,BC = BD = AC = AD = b\)

\( \Rightarrow AE = BE = \sqrt {{b^2} - \frac{{{a^2}}}{a}} \)

Ta có: \({S_{\Delta BCD}} = \frac{1}{2}BE.CD = \frac{1}{2}.\sqrt {{b^2} - \frac{{{a^2}}}{4}} .a\)

\[{\rm{EF}} = \sqrt {B{E^2} - B{F^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{4} - \frac{{{a^2}}}{4}} = \sqrt {{b^2} - \frac{{{a^2}}}{2}} \]

\({S_{\Delta ABE}} = \frac{1}{2}AH.BE = \frac{1}{2}EF.AB \Rightarrow AH.BE = EF.AB \Leftrightarrow AH.\sqrt {{b^2} - \frac{{{a^2}}}{4}} = \sqrt {{b^2} - \frac{{{a^2}}}{2}} .a \Leftrightarrow AH = \frac{{\sqrt {{b^2} - \frac{{{a^2}}}{2}} .a}}{{\sqrt {{b^2} - \frac{{{a^2}}}{4}} }}\) Thể tích khối tứ diện ABCD: \(V = \frac{1}{3}AH.{S_{\Delta BCD}} = \frac{1}{3}.\frac{{\sqrt {{b^2} - \frac{{{a^2}}}{2}} .a}}{{\sqrt {{b^2} - \frac{{{a^2}}}{4}} }}.\frac{1}{2}.\sqrt {{b^2} - \frac{{{a^2}}}{4}} .a = \frac{{{a^2}\sqrt {{b^2} - \frac{{{a^2}}}{2}} }}{6}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Phương pháp:

Hàm số \(y = {\log _a}f\left( x \right)\,\left( {0 < a \ne 1} \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)

Cách giải:

ĐKXĐ: \({x^2} - 3x + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right. \Rightarrow \) TXĐ: \(D = R\backslash \left[ {1;2} \right]\)

Lời giải

Đáp án A

Phương pháp:

Xác định số điểm mà tại đó đạo hàm \(f'\left( x \right)\) đổi dấu.

Cách giải:

\(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{1}{2}\end{array} \right.\)

Trong đó \(f'\left( x \right)\) chỉ đổi dấu tại điểm \(x = \frac{1}{2} \Rightarrow \) Hàm số đã cho có 1 điểm cực trị.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP