Câu hỏi:
23/02/2023 372Các hình trụ tròn xoay có diện tích toàn phần là S không đổi, gọi chiều cao hình trụ là h và bán kính đáy hình trụ là r. Thể tích của khối trụ đó đạt giá trị lớn nhất khi
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
+) Diện tích xung quanh hình trụ tròn xoay: \({S_{xq}} = 2\pi Rl = 2\pi Rh\)
+) Diện tích toàn phần hình trụ tròn xoay:
+) Thể tích khối trụ: \(V = Sh = \pi {R^2}h\)
Cách giải:
Diện tích toàn phần hình trụ tròn xoay đó là:
\(S = 2\pi rh + 2\pi {r^2} \Rightarrow h = \frac{S}{{2\pi r}} - r\)
Thể tích của khối trụ đó là: \(V = \pi {r^2}h = \pi {r^2}\left( {\frac{S}{{2\pi r}} - r} \right) = \frac{{Sr}}{2} - \pi {r^3}\)
Xét hàm số \(f\left( r \right) = \frac{{Sr}}{2} - \pi {r^3},\,\,r > 0\) có \(f'\left( r \right) = \frac{S}{2} - 3\pi {r^2} = 0 \Rightarrow r = \sqrt {\frac{S}{{6\pi }}} \)
\( \Rightarrow \) Thể tích khối trụ lớn nhất khi
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập xác định của hàm số \(y = {\log _2}\left( {{x^2} - 3x + 2} \right)\) là:
Câu 2:
Đồ thị sau đây là của hàm số \[y = {x^3} - 3x + 1\]. Với giá trị nào của m thì phương trình \({x^3} - 3x - m = 0\) có ba nghiệm phân biệt?
Câu 3:
Khối lập phương ABCD.A’B’C’D’ có độ dài đoạn \(AB' = 2a\). Thể tích của khối đó là
Câu 4:
Tập hợp tất cả các số thực m để hàm số \(y = {x^3} + 5{x^2} - 4mx - 3\) đồng biến trên R là
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right)\). Khi đó số điểm cực trị của hàm số đã cho là bao nhiêu?
Câu 7:
Cho tứ diện ABCD, có \(AB = AC = AD = a,\,\,\,BAD = {90^0};\,\,DAC = {60^0};\,\,CAB = {120^0}\). Thể tích tứ diện ABCD là
về câu hỏi!