Một chất điểm chuyển động theo quy luật \(S = - \frac{1}{3}{t^3} + 4{t^2} + 9t\) với \(t\) (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và \(S\) (mét) là quãng đường vật chuyển động trong thời gian đó. Hỏi trong khoảng thời gian \(10\) giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của chất điểm là bao nhiêu?
Cho hình chóp \[S.ABC\]có \[SA\]vuông góc mặt đáy, tam giác \[ABC\]vuông tại \[A\], \[SA = 2{\rm{cm}}\], \[AB = 4{\rm{cm}}\], \[AC = 3{\rm{cm}}\]. Tính thể tích khối chóp \(S.ABC\).
Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\)và có đạo hàm \(f'\left( x \right)\)thỏa mãn: \(f'\left( x \right) = \left( {1 - {x^2}} \right)\left( {x - 5} \right)\).Hàm số \(y = 3f\left( {x + 3} \right) - {x^3} + 12x\)nghịch biến trên khoảng nào sau đây?
về câu hỏi!