Câu hỏi:

24/02/2023 2,020

Cho hàm số \[y = f\left( x \right)\]có đạo hàm trên \[\mathbb{R}.\]Đồ thị hàm số \[y = f'\left( x \right)\]như hình vẽ.

Media VietJack

Hàm số \[y = f\left( {{x^2} + 2x} \right)\]đồng biến trên khoảng nào sau đây?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A

Từ đồ thị của hàm số \[y = f'\left( x \right)\]ta có bảng biến thiên của hàm số \[y = f\left( x \right)\]như sau

Media VietJack

Đặt \[g\left( x \right) = f\left( {{x^2} + 2x} \right)\], ta có \[g'\left( x \right) = {\left( {{x^2} + 2x} \right)^\prime }.f'\left( {{x^2} + 2x} \right) = 2\left( {x + 1} \right).f'\left( {{x^2} + 2x} \right).\]

Hàm số \[g\left( x \right)\]đồng biến khi \[g'\left( x \right) \ge 0 \Leftrightarrow \left( {x + 1} \right).f'\left( {{x^2} + 2x} \right) \ge 0\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\f'\left( {{x^2} + 2x} \right) \ge 0\end{array} \right.\quad \left( 1 \right)\]hoặc \[\left\{ \begin{array}{l}x + 1 \le 0\\f'\left( {{x^2} + 2x} \right) \le 0\end{array} \right.\quad \left( 2 \right)\]

·Xét \[\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\\left[ \begin{array}{l} - 1 \le {x^2} + 2x \le 1\\{x^2} + 2x \ge 3\end{array} \right.\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\\left[ \begin{array}{l} - 1 - \sqrt 2 \le x \le - 1 + \sqrt 2 \\x \le - 3\\x \ge 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 1 \le x \le - 1 + \sqrt 2 \\x \ge 1\end{array} \right..\]

·Xét \[\left( 2 \right) \Leftrightarrow \left\{ \begin{array}{l}x + 1 \le 0\\\left[ \begin{array}{l}{x^2} + 2x \le - 1\\1 \le {x^2} + 2x \le 3\end{array} \right.\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x \le - 1\\\left[ \begin{array}{l}x = - 1\\\left\{ \begin{array}{l}{x^2} + 2x - 1 \ge 0\\{x^2} + 2x - 3 \le 0\end{array} \right.\end{array} \right.\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x \le - 1\\\left[ \begin{array}{l}x = - 1\\\left\{ \begin{array}{l}\left[ \begin{array}{l}x \le - 1 - \sqrt 2 \\x \ge - 1 + \sqrt 2 \end{array} \right.\\ - 3 \le x \le 1\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 3 \le x \le - 1 - \sqrt 2 \\x = - 1\end{array} \right..\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một chất điểm chuyển động theo quy luật \(S = - \frac{1}{3}{t^3} + 4{t^2} + 9t\) với \(t\) (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và \(S\) (mét) là quãng đường vật chuyển động trong thời gian đó. Hỏi trong khoảng thời gian \(10\) giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của chất điểm là bao nhiêu?

Xem đáp án » 24/02/2023 20,908

Câu 2:

Hàm số nào sau đây nghịch biến trên \[\mathbb{R}\]?

Xem đáp án » 23/02/2023 14,142

Câu 3:

Cho hình chóp \[S.ABC\]\[SA\]vuông góc mặt đáy, tam giác \[ABC\]vuông tại \[A\], \[SA = 2{\rm{cm}}\], \[AB = 4{\rm{cm}}\], \[AC = 3{\rm{cm}}\]. Tính thể tích khối chóp \(S.ABC\).

Xem đáp án » 23/02/2023 9,994

Câu 4:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Media VietJack

Xem đáp án » 24/02/2023 7,285

Câu 5:

Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\)và có đạo hàm \(f'\left( x \right)\)thỏa mãn: \(f'\left( x \right) = \left( {1 - {x^2}} \right)\left( {x - 5} \right)\).Hàm số \(y = 3f\left( {x + 3} \right) - {x^3} + 12x\)nghịch biến trên khoảng nào sau đây?

Xem đáp án » 24/02/2023 7,131

Câu 6:

Giao điểm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 2}}\)

Xem đáp án » 23/02/2023 5,761

Câu 7:

Tìm tổng các số nguyên dương \[m\] để hàm số \[y = {x^4} + \left( {m - 5} \right){x^2} + 5\] có 3 điểm cực trị.

Xem đáp án » 23/02/2023 5,329

Bình luận


Bình luận