Câu hỏi:

24/02/2023 2,249

Cho hàm số \[y = f\left( x \right)\]có đạo hàm trên \[\mathbb{R}.\]Đồ thị hàm số \[y = f'\left( x \right)\]như hình vẽ.

Media VietJack

Hàm số \[y = f\left( {{x^2} + 2x} \right)\]đồng biến trên khoảng nào sau đây?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A

Từ đồ thị của hàm số \[y = f'\left( x \right)\]ta có bảng biến thiên của hàm số \[y = f\left( x \right)\]như sau

Media VietJack

Đặt \[g\left( x \right) = f\left( {{x^2} + 2x} \right)\], ta có \[g'\left( x \right) = {\left( {{x^2} + 2x} \right)^\prime }.f'\left( {{x^2} + 2x} \right) = 2\left( {x + 1} \right).f'\left( {{x^2} + 2x} \right).\]

Hàm số \[g\left( x \right)\]đồng biến khi \[g'\left( x \right) \ge 0 \Leftrightarrow \left( {x + 1} \right).f'\left( {{x^2} + 2x} \right) \ge 0\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\f'\left( {{x^2} + 2x} \right) \ge 0\end{array} \right.\quad \left( 1 \right)\]hoặc \[\left\{ \begin{array}{l}x + 1 \le 0\\f'\left( {{x^2} + 2x} \right) \le 0\end{array} \right.\quad \left( 2 \right)\]

·Xét \[\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\\left[ \begin{array}{l} - 1 \le {x^2} + 2x \le 1\\{x^2} + 2x \ge 3\end{array} \right.\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\\left[ \begin{array}{l} - 1 - \sqrt 2 \le x \le - 1 + \sqrt 2 \\x \le - 3\\x \ge 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 1 \le x \le - 1 + \sqrt 2 \\x \ge 1\end{array} \right..\]

·Xét \[\left( 2 \right) \Leftrightarrow \left\{ \begin{array}{l}x + 1 \le 0\\\left[ \begin{array}{l}{x^2} + 2x \le - 1\\1 \le {x^2} + 2x \le 3\end{array} \right.\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x \le - 1\\\left[ \begin{array}{l}x = - 1\\\left\{ \begin{array}{l}{x^2} + 2x - 1 \ge 0\\{x^2} + 2x - 3 \le 0\end{array} \right.\end{array} \right.\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x \le - 1\\\left[ \begin{array}{l}x = - 1\\\left\{ \begin{array}{l}\left[ \begin{array}{l}x \le - 1 - \sqrt 2 \\x \ge - 1 + \sqrt 2 \end{array} \right.\\ - 3 \le x \le 1\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 3 \le x \le - 1 - \sqrt 2 \\x = - 1\end{array} \right..\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một chất điểm chuyển động theo quy luật \(S = - \frac{1}{3}{t^3} + 4{t^2} + 9t\) với \(t\) (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và \(S\) (mét) là quãng đường vật chuyển động trong thời gian đó. Hỏi trong khoảng thời gian \(10\) giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của chất điểm là bao nhiêu?

Xem đáp án » 24/02/2023 22,438

Câu 2:

Hàm số nào sau đây nghịch biến trên \[\mathbb{R}\]?

Xem đáp án » 23/02/2023 14,502

Câu 3:

Cho hình chóp \[S.ABC\]\[SA\]vuông góc mặt đáy, tam giác \[ABC\]vuông tại \[A\], \[SA = 2{\rm{cm}}\], \[AB = 4{\rm{cm}}\], \[AC = 3{\rm{cm}}\]. Tính thể tích khối chóp \(S.ABC\).

Xem đáp án » 23/02/2023 10,559

Câu 4:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Media VietJack

Xem đáp án » 24/02/2023 7,470

Câu 5:

Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\)và có đạo hàm \(f'\left( x \right)\)thỏa mãn: \(f'\left( x \right) = \left( {1 - {x^2}} \right)\left( {x - 5} \right)\).Hàm số \(y = 3f\left( {x + 3} \right) - {x^3} + 12x\)nghịch biến trên khoảng nào sau đây?

Xem đáp án » 24/02/2023 7,396

Câu 6:

Giao điểm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 2}}\)

Xem đáp án » 23/02/2023 5,943

Câu 7:

Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\)và có bảng biến thiên như sau:

Media VietJack

Đồ thị hàm số \(y = \frac{1}{{2f\left( x \right) - 5}}\)có bao nhiêu đường tiệm cận đứng?

Xem đáp án » 24/02/2023 5,443
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua