Câu hỏi:
24/02/2023 3,055
Cho hàm số \[y = f\left( x \right)\]có đạo hàm trên \[\mathbb{R}.\]Đồ thị hàm số \[y = f'\left( x \right)\]như hình vẽ.

Hàm số \[y = f\left( {{x^2} + 2x} \right)\]đồng biến trên khoảng nào sau đây?
Cho hàm số \[y = f\left( x \right)\]có đạo hàm trên \[\mathbb{R}.\]Đồ thị hàm số \[y = f'\left( x \right)\]như hình vẽ.

Hàm số \[y = f\left( {{x^2} + 2x} \right)\]đồng biến trên khoảng nào sau đây?
Câu hỏi trong đề: Bộ 20 đề thi giữa kì 1 Toán 12 năm 2022-2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Chọn A
Từ đồ thị của hàm số \[y = f'\left( x \right)\]ta có bảng biến thiên của hàm số \[y = f\left( x \right)\]như sau

Đặt \[g\left( x \right) = f\left( {{x^2} + 2x} \right)\], ta có \[g'\left( x \right) = {\left( {{x^2} + 2x} \right)^\prime }.f'\left( {{x^2} + 2x} \right) = 2\left( {x + 1} \right).f'\left( {{x^2} + 2x} \right).\]
Hàm số \[g\left( x \right)\]đồng biến khi \[g'\left( x \right) \ge 0 \Leftrightarrow \left( {x + 1} \right).f'\left( {{x^2} + 2x} \right) \ge 0\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\f'\left( {{x^2} + 2x} \right) \ge 0\end{array} \right.\quad \left( 1 \right)\]hoặc \[\left\{ \begin{array}{l}x + 1 \le 0\\f'\left( {{x^2} + 2x} \right) \le 0\end{array} \right.\quad \left( 2 \right)\]
·Xét \[\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\\left[ \begin{array}{l} - 1 \le {x^2} + 2x \le 1\\{x^2} + 2x \ge 3\end{array} \right.\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\\left[ \begin{array}{l} - 1 - \sqrt 2 \le x \le - 1 + \sqrt 2 \\x \le - 3\\x \ge 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 1 \le x \le - 1 + \sqrt 2 \\x \ge 1\end{array} \right..\]
·Xét \[\left( 2 \right) \Leftrightarrow \left\{ \begin{array}{l}x + 1 \le 0\\\left[ \begin{array}{l}{x^2} + 2x \le - 1\\1 \le {x^2} + 2x \le 3\end{array} \right.\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x \le - 1\\\left[ \begin{array}{l}x = - 1\\\left\{ \begin{array}{l}{x^2} + 2x - 1 \ge 0\\{x^2} + 2x - 3 \le 0\end{array} \right.\end{array} \right.\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x \le - 1\\\left[ \begin{array}{l}x = - 1\\\left\{ \begin{array}{l}\left[ \begin{array}{l}x \le - 1 - \sqrt 2 \\x \ge - 1 + \sqrt 2 \end{array} \right.\\ - 3 \le x \le 1\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 3 \le x \le - 1 - \sqrt 2 \\x = - 1\end{array} \right..\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Chọn B
Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)
\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)
Bảng biến thiên:

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)
Lời giải
Lời giải
Chọn C
Ta loại ngay được hai hàm số ở các phương án A và B
Với hàm số ở
Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\) và \(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.