Câu hỏi:

24/02/2023 3,981 Lưu

Với giá trị nào của tham số \(m\) thì phương trình \({x^3} - m{x^2} - 6x - 8 = 0\) có ba nghiệm thực lập thành một cấp số nhân?

A. \(m = 1\).
B. \(m = - 3\).
C. \(m = 3\).
D. \(m = - 4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn B

Ta chứng minh nếu \({x_1}\), \({x_2}\), \({x_3}\) là nghiệm của phương trình \({x^3} - m{x^2} - 6x - 8 = 0\) thì \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} + {x_3} = m}\\{{x_1}{x_2}{x_3} = 8}\end{array}} \right.\).

Thật vậy \({x^3} - m{x^2} - 6x - 8 = \left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\left( {x - {x_3}} \right)\)

\( \Leftrightarrow {x^3} - m{x^2} - 6x - 8 = {x^3} - \left( {{x_1} + {x_2} + {x_3}} \right){x^2} + \left( {{x_1}{x_2} + {x_2}{x_3} + {x_3}{x_1}} \right)x - {x_1}{x_2}{x_3} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} + {x_3} = m}\\{{x_1}{x_2}{x_3} = 8}\end{array}} \right.\).

Điều kiện cần: Phương trình \({x^3} - m{x^2} - 6x - 8 = 0\)có ba nghiệm thực \({x_1} < {x_2} < {x_3}\)

lập thành một cấp số nhân \( \Leftrightarrow {x_1}.{x_3} = {x_2}^2\) \( \Leftrightarrow {x_1}.{x_2}.{x_3} = {x_2}^3 \Leftrightarrow 8 = {x_2}^3 \Leftrightarrow {x_2} = 2\).

Vậy phương trình \({x^3} - m{x^2} - 6x - 8 = 0\)phải có nghiệm bằng \(2\).

Thay \(x = 2\) vào phương trình ta có \(m = - 3\).

Điều kiện đủ: Thử lại với \(m = - 3\)ta có \({x^3} + 3{x^2} - 6x - 8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 4}\\{x = 2}\\{x = - 1}\end{array}} \right.\) (thỏa yêu cầu bài toán).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)

\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)

Bảng biến thiên:

Media VietJack

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)

Câu 2

A. \[y = - {x^4} + 2{x^2} - 2\].
B. \[y = {x^4} - 3{x^2} + 5\].
C. \[y = - {x^3} + {x^2} - 2x - 1\].
D. \[y = - {x^3} - 3{x^2} + 4\].

Lời giải

Lời giải

Chọn C

Ta loại ngay được hai hàm số ở các phương án A và B

Với hàm số ở

Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\)\(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C

Câu 3

A. \(\frac{{12}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
B. \(\frac{{24}}{5}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
C. \(\frac{{24}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
D. \(24{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = {x^3} - 2{x^2} + 1\).
B. \(y = - {x^3} + 2{x^2} + 1\).
C. \(y = - {x^4} + 2{x^2} + 1\).
D. \(y = {x^4} - 2{x^2} + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(I\left( {2; - 2} \right)\).
B. \(N\left( {2; - 1} \right)\).
C. \(M\left( { - 2;2} \right)\).
D. \(J\left( {2;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP