Câu hỏi:
24/02/2023 947Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm \(y = f'\left( x \right)\) như hình vẽ
Đặt \(g\left( x \right) = 3f\left( x \right) - {x^3} + 3x - m\), với \(m\) là tham số thực. Điều kiện cần và đủ để bất phương trình \(g\left( x \right) \ge 0\) đúng với \(\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\) là
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
Chọn A
\(g\left( x \right) \ge 0 \Leftrightarrow 3f\left( x \right) - {x^3} + 3x - m \ge 0 \Leftrightarrow 3f\left( x \right) - {x^3} + 3x \ge m\).
Đặt \(h\left( x \right) = 3f\left( x \right) - {x^3} + 3x\). Ta có \(h'\left( x \right) = 3f'\left( x \right) - 3{x^2} + 3\). Suy ra
\(\,\,\left\{ \begin{array}{l}h'\left( { - \sqrt 3 } \right) = 3f'\left( { - \sqrt 3 } \right) - 6 = 0\\h'\left( {\sqrt 3 } \right) = 3f'\left( {\sqrt 3 } \right) - 6 = 0\\h'\left( 0 \right) = 3f'\left( 0 \right) = 0\\h'\left( 1 \right) = 3f'\left( 1 \right) < 0\end{array} \right.\)
Từ đó ta có bảng biến thiên
Vậy \(g\left( x \right) \le m \Leftrightarrow g\left( x \right) \le h\left( {\sqrt 3 } \right) = 3f\left( {\sqrt 3 } \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!