Câu hỏi:
24/02/2023 1,167Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm \(y = f'\left( x \right)\) như hình vẽ
Đặt \(g\left( x \right) = 3f\left( x \right) - {x^3} + 3x - m\), với \(m\) là tham số thực. Điều kiện cần và đủ để bất phương trình \(g\left( x \right) \ge 0\) đúng với \(\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
Chọn A
\(g\left( x \right) \ge 0 \Leftrightarrow 3f\left( x \right) - {x^3} + 3x - m \ge 0 \Leftrightarrow 3f\left( x \right) - {x^3} + 3x \ge m\).
Đặt \(h\left( x \right) = 3f\left( x \right) - {x^3} + 3x\). Ta có \(h'\left( x \right) = 3f'\left( x \right) - 3{x^2} + 3\). Suy ra
\(\,\,\left\{ \begin{array}{l}h'\left( { - \sqrt 3 } \right) = 3f'\left( { - \sqrt 3 } \right) - 6 = 0\\h'\left( {\sqrt 3 } \right) = 3f'\left( {\sqrt 3 } \right) - 6 = 0\\h'\left( 0 \right) = 3f'\left( 0 \right) = 0\\h'\left( 1 \right) = 3f'\left( 1 \right) < 0\end{array} \right.\)
Từ đó ta có bảng biến thiên
Vậy \(g\left( x \right) \le m \Leftrightarrow g\left( x \right) \le h\left( {\sqrt 3 } \right) = 3f\left( {\sqrt 3 } \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\)và có bảng biến thiên như sau:
Đồ thị hàm số \(y = \frac{1}{{2f\left( x \right) - 5}}\)có bao nhiêu đường tiệm cận đứng?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận