Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm \(y = f'\left( x \right)\) như hình vẽ

Đặt \(g\left( x \right) = 3f\left( x \right) - {x^3} + 3x - m\), với \(m\) là tham số thực. Điều kiện cần và đủ để bất phương trình \(g\left( x \right) \ge 0\) đúng với \(\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\) là
Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm \(y = f'\left( x \right)\) như hình vẽ

Đặt \(g\left( x \right) = 3f\left( x \right) - {x^3} + 3x - m\), với \(m\) là tham số thực. Điều kiện cần và đủ để bất phương trình \(g\left( x \right) \ge 0\) đúng với \(\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\) là
Quảng cáo
Trả lời:
Lời giải
Chọn A
\(g\left( x \right) \ge 0 \Leftrightarrow 3f\left( x \right) - {x^3} + 3x - m \ge 0 \Leftrightarrow 3f\left( x \right) - {x^3} + 3x \ge m\).
Đặt \(h\left( x \right) = 3f\left( x \right) - {x^3} + 3x\). Ta có \(h'\left( x \right) = 3f'\left( x \right) - 3{x^2} + 3\). Suy ra
\(\,\,\left\{ \begin{array}{l}h'\left( { - \sqrt 3 } \right) = 3f'\left( { - \sqrt 3 } \right) - 6 = 0\\h'\left( {\sqrt 3 } \right) = 3f'\left( {\sqrt 3 } \right) - 6 = 0\\h'\left( 0 \right) = 3f'\left( 0 \right) = 0\\h'\left( 1 \right) = 3f'\left( 1 \right) < 0\end{array} \right.\)
Từ đó ta có bảng biến thiên

Vậy \(g\left( x \right) \le m \Leftrightarrow g\left( x \right) \le h\left( {\sqrt 3 } \right) = 3f\left( {\sqrt 3 } \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Chọn B
Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)
\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)
Bảng biến thiên:

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)
Câu 2
Lời giải
Lời giải
Chọn C
Ta loại ngay được hai hàm số ở các phương án A và B
Với hàm số ở
Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\) và \(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

