Tính tích tất cả các số thực \[m\] để hàm số \(y = \left| {\frac{4}{3}{x^3} - 6{x^2} + 8x + m} \right|\) có giá trị nhỏ nhất trên đoạn \(\left[ {0;\,\,3} \right]\) bằng \[18\] là
Quảng cáo
Trả lời:
Lời giải
Chọn C
+ Xét hàm số \(f\left( x \right) = \frac{4}{3}{x^3} - 6{x^2} + 8x + m\) liên tục trên đoạn \(\left[ {0;\,\,3} \right]\).
+ Ta có \(f'\left( x \right) = 4{x^2} - 12x + 8\).
+ \(f'\left( x \right) = 0 \Leftrightarrow 4{x^2} - 12x + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \left[ {0;3} \right]\\x = 2 \in \left[ {0;3} \right]\end{array} \right.\).
+ \(f\left( 0 \right) = m;\,\,f\left( 1 \right) = \frac{{10}}{3} + m;\,\,f\left( 2 \right) = \frac{8}{3} + m;\,\,f\left( 3 \right) = 6 + m\).
Khi đó \[\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = \max \left\{ {f\left( 0 \right);\,f\left( 1 \right);\,f\left( 2 \right);\,f\left( 3 \right)} \right\} = f\left( 3 \right) = m + 6\\\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = \min \left\{ {f\left( 0 \right);\,f\left( 1 \right);\,f\left( 2 \right);\,f\left( 3 \right)} \right\} = f\left( 0 \right) = m\end{array} \right.\].
Suy ra \[\mathop {\min }\limits_{\left[ {0;3} \right]} y = \min \left\{ {0\,;\,\left| m \right|;\,\,\left| {m + 6} \right|} \right\}\].
TH1. \[m > 0\].
\[\mathop {\min }\limits_{\left[ {0;3} \right]} y = m \Leftrightarrow m = 18\] (thỏa mãn).
TH2. \[m + 6 < 0 \Leftrightarrow m < - 6\].
\[\mathop {\min }\limits_{\left[ {0;3} \right]} y = - m - 6 \Leftrightarrow - m - 6 = 18 \Leftrightarrow m = - 24\] (thỏa mãn).
TH3. \[m\left( {m + 6} \right) \le 0 \Leftrightarrow - 6 \le m \le 0 \Rightarrow \mathop {\min }\limits_{\left[ {0;3} \right]} y = 0\](loại).
Kết luận: tích các số thực \[m\] thỏa mãn yêu cầu bài toán là: \( - 24.18 = - 432\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Chọn B
Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)
\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)
Bảng biến thiên:

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)
Lời giải
Lời giải
Chọn C
Ta loại ngay được hai hàm số ở các phương án A và B
Với hàm số ở
Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\) và \(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.