Câu hỏi:

24/02/2023 439 Lưu

Tính tích tất cả các số thực \[m\] để hàm số \(y = \left| {\frac{4}{3}{x^3} - 6{x^2} + 8x + m} \right|\) có giá trị nhỏ nhất trên đoạn \(\left[ {0;\,\,3} \right]\) bằng \[18\]

A. \[432\].
B. \[ - 216\].
C. \[ - 432\].
D. \[288\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn C

+ Xét hàm số \(f\left( x \right) = \frac{4}{3}{x^3} - 6{x^2} + 8x + m\) liên tục trên đoạn \(\left[ {0;\,\,3} \right]\).

+ Ta có \(f'\left( x \right) = 4{x^2} - 12x + 8\).

+ \(f'\left( x \right) = 0 \Leftrightarrow 4{x^2} - 12x + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \left[ {0;3} \right]\\x = 2 \in \left[ {0;3} \right]\end{array} \right.\).

+ \(f\left( 0 \right) = m;\,\,f\left( 1 \right) = \frac{{10}}{3} + m;\,\,f\left( 2 \right) = \frac{8}{3} + m;\,\,f\left( 3 \right) = 6 + m\).

Khi đó \[\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = \max \left\{ {f\left( 0 \right);\,f\left( 1 \right);\,f\left( 2 \right);\,f\left( 3 \right)} \right\} = f\left( 3 \right) = m + 6\\\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = \min \left\{ {f\left( 0 \right);\,f\left( 1 \right);\,f\left( 2 \right);\,f\left( 3 \right)} \right\} = f\left( 0 \right) = m\end{array} \right.\].

Suy ra \[\mathop {\min }\limits_{\left[ {0;3} \right]} y = \min \left\{ {0\,;\,\left| m \right|;\,\,\left| {m + 6} \right|} \right\}\].

TH1. \[m > 0\].

\[\mathop {\min }\limits_{\left[ {0;3} \right]} y = m \Leftrightarrow m = 18\] (thỏa mãn).

TH2. \[m + 6 < 0 \Leftrightarrow m < - 6\].

\[\mathop {\min }\limits_{\left[ {0;3} \right]} y = - m - 6 \Leftrightarrow - m - 6 = 18 \Leftrightarrow m = - 24\] (thỏa mãn).

TH3. \[m\left( {m + 6} \right) \le 0 \Leftrightarrow - 6 \le m \le 0 \Rightarrow \mathop {\min }\limits_{\left[ {0;3} \right]} y = 0\](loại).

Kết luận: tích các số thực \[m\] thỏa mãn yêu cầu bài toán là: \( - 24.18 = - 432\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Chọn B

Ta có \(v = S' = - {t^2} + 8t + 9,t \in \left( {0;10} \right)\)

\(v' = - 2t + 8\). Xét \(v' = 0 \Rightarrow t = 4 \in \left( {0;10} \right)\)

Bảng biến thiên:

Media VietJack

Vậy vận tốc lớn nhất của chất điểm là \(25\left( {{\rm{m/s}}} \right)\) tại tại \(t = 4.\)

Câu 2

A. \[y = - {x^4} + 2{x^2} - 2\].
B. \[y = {x^4} - 3{x^2} + 5\].
C. \[y = - {x^3} + {x^2} - 2x - 1\].
D. \[y = - {x^3} - 3{x^2} + 4\].

Lời giải

Lời giải

Chọn C

Ta loại ngay được hai hàm số ở các phương án A và B

Với hàm số ở

Ta có \(y' = - 3{x^2} - 6x\), \(y' = 0\) có hai nghiệm phân biệt \(x = 0\)\(x = - 2\) nên không thể đơn điệu trên \(\mathbb{R}\). Vậy đáp án là C

Câu 3

A. \(\frac{{12}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
B. \(\frac{{24}}{5}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
C. \(\frac{{24}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
D. \(24{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = {x^3} - 2{x^2} + 1\).
B. \(y = - {x^3} + 2{x^2} + 1\).
C. \(y = - {x^4} + 2{x^2} + 1\).
D. \(y = {x^4} - 2{x^2} + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(I\left( {2; - 2} \right)\).
B. \(N\left( {2; - 1} \right)\).
C. \(M\left( { - 2;2} \right)\).
D. \(J\left( {2;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP