Câu hỏi:

26/02/2023 3,961

Từ một miếng tôn hình bán nguyệt có bán kính R=4, người ta muốn cắt một hình chữ nhật (xem hình vẽ) có diện tích lớn nhất. Diện tích lớn nhất có thể của miếng tôn hình chữ nhật bằng
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Media VietJack
Gọi chiều rộng của hình chữ nhật là x,0<x4
Chiều dài của hình chữ nhật là 2y,y>0
Xét ΔONP vuông tại P ta có x2+y2=16y=16x2
Diện tích hình chữ nhật MNPQ
SMNPQ=x.2.16x2=2.x.16x22.x2+16x22=16
Vậy diện tích lớn nhất của hình chữ nhật là 16 (đvdt)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D
g'x=2x.f'x22
g'x=02x.f'x22=0x=0f'x22=0x=0x22=1x22=2x=0x=±1x=±2
Bảng xét dấu g'x :
Media VietJack
Vậy hàm số nghịch biến trên khoảng 0;1.

Câu 2

Lời giải

Chọn D
Đáp án A sai, ví dụ hàm số y=x4 đạt cực trị tại  x=0 nhưng f''0=0
Đáp án B sai, ví dụ hàm số y=x đạt cực tiểu tại x=0 nhưng không tồn tại f'0
Đáp án C sai, ví dụ hàm số y=x2 đạt cực tiểu tại x=0 và f'0=0
Đáp án D đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP