Câu hỏi:

26/02/2023 5,932 Lưu

Cho hàm số \[y = f\left( x \right)\]có đạo hàm trên \[\mathbb{R}\]. Xét tính đúng sai của các mệnh đề sau:

(I):Nếu \[f'\left( x \right) > 0\]trên khoảng \[\left( {{x_0} - h;{x_0}} \right)\]\[f'\left( x \right) < 0\]trên khoảng \[\left( {{x_0};{x_0} + h} \right)\]\[\left( {h > 0} \right)\]thì hàm số đạt cực đại tại điểm \[{x_0}\].
(II):Nếu hàm số đạt cực đại tại điểm \[{x_0}\]thì tồn tại các khoảng \[\left( {{x_0} - h;{x_0}} \right)\], \[\left( {{x_0};{x_0} + h} \right)\]\[\left( {h > 0} \right)\]sao cho \[f'\left( x \right) > 0\]trên khoảng \[\left( {{x_0} - h;{x_0}} \right)\]\[f'\left( x \right) < 0\]trên khoảng \[\left( {{x_0};{x_0} + h} \right)\].

A.  Cả (I) và (II) cùng đúng.
B. Cả (I) và (II) cùng sai.
C.  Mệnh đề (I) đúng, mệnh đề (II) sai.
D. Mệnh đề (I) sai, mệnh đề (II) đúng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

 Lời giải

Chọn C
Ta có mệnh đề (I) đúng và mệnh đề (II) sai (câu lý thuyết)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.  \(\mathop {{\rm{min}}}\limits_{\left( {0; + \infty } \right)} y = 2\sqrt[3]{9}\).
B. \(\mathop {{\rm{min}}}\limits_{\left( {0; + \infty } \right)} y = 3\sqrt[3]{9}\).
C.  \(\mathop {{\rm{min}}}\limits_{\left( {0; + \infty } \right)} y = 7\).
D. \(\mathop {{\rm{min}}}\limits_{\left( {0; + \infty } \right)} y = \frac{{33}}{5}\).

Lời giải

Lời giải

Chọn B
Cách 1: (Dùng bất đẳng thức CauChy)
\(y = 3x + \frac{4}{{{x^2}}} = \frac{{3x}}{2} + \frac{{3x}}{2} + \frac{4}{{{x^2}}} \ge 3\sqrt[3]{{\frac{{3x}}{2}.\frac{{3x}}{2}.\frac{4}{{{x^2}}}}} = 3\sqrt[3]{9}\) (do \(x > 0\))
Dấu xảy ra khi \(\frac{{3x}}{2} = \frac{4}{{{x^2}}} \Leftrightarrow x = \sqrt[3]{{\frac{8}{3}}}\).
Vậy \(\mathop {{\rm{min}}}\limits_{\left( {0; + \infty } \right)} y = 3\sqrt[3]{9}\)
Cách 2: (Dùng đạo hàm)
Xét hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\)
Ta có \(y = 3x + \frac{4}{{{x^2}}} \Rightarrow y{\rm{'}} = 3 - \frac{8}{{{x^3}}}\)
Cho \(y{\rm{'}} = 0 \Leftrightarrow \frac{8}{{{x^3}}} = 3 \Leftrightarrow {x^3} = \frac{8}{3} \Leftrightarrow x = \sqrt[3]{{\frac{8}{3}}}\)
Media VietJack
\( \Rightarrow \mathop {{\rm{min}}}\limits_{\left( {0; + \infty } \right)} y = y\left( {\sqrt[3]{{\frac{8}{3}}}} \right) = 3\sqrt[3]{9}\).

Lời giải

Lời giải

Chọn D
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2 \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{f\left( x \right)}} = \frac{1}{2}\); \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - 2 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{f\left( x \right)}} = - \frac{1}{2}\).
Suy ra đồ thị hàm số \(y = \frac{1}{{f\left( x \right)}}\)có hai đường tiệm cận ngang là \(y = \frac{1}{2}\)\(y = - \frac{1}{2}\).
Dựa vào bảng biến thiên của hàm số \(y = f\left( x \right)\)ta thấy: phương trình \(f\left( x \right) = 0\)có hai nghiệm phân biệt \({x_1} < - 1 < {x_2}\).
Khi đó: \(f\left( {{x_1}} \right) = f\left( {{x_2}} \right) = 0\).
Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {x_1}^ - } f\left( x \right) = 0\\f\left( x \right) > 0\,khi\,x \to {x_1}^ - \end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {x_1}^ - } \frac{1}{{f\left( x \right)}} = + \infty \)\(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {x_2}^ - } f\left( x \right) = 0\\f\left( x \right) > 0\,khi\,x \to {x_2}^ - \end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {x_2}^ - } \frac{1}{{f\left( x \right)}} = + \infty \).
Vậy đồ thị hàm số \(y = \frac{1}{{f\left( x \right)}}\)có hai tiệm cận đứng là đường thẳng \(x = {x_1}\)\(x = {x_2}\).

Câu 4

A. \(f\left( 3 \right) = 0\).
B. \(f\left( 2 \right) + f\left( 3 \right) = 4\).
C. \(f\left( 1 \right) = 4\).
D. \(f\left( {2019} \right) > f\left( {2020} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = {x^4} + 3{x^2}\).
B. \(y = - {x^4} - 2{x^2}\).
C. \(y = - {x^4} + 4{x^2}\).
D. \(y = \frac{1}{4}{x^4} - 2{x^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{c}}{m > 2}\\{m < - 2}\end{array}} \right.}\\{m \ne - \frac{5}{2}}\end{array}} \right.\).
B. \(\left[ {\begin{array}{*{20}{c}}{m < - 2}\\{m > 2}\end{array}} \right.\).
C. \(m > 2\).
D. \(\left\{ {\begin{array}{*{20}{c}}{m < - 2}\\{m \ne - \frac{5}{2}}\end{array}} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP