Câu hỏi:

26/02/2023 310

Cho tứ diện \(OABC\)\(OA\), \(OB\), \(OC\) đôi một vuông góc với nhau và \(OA = 2a\), \(OB = 3a\), \(OC = 8a\). \(M\) là trung điểm đoạn \(OC\). Tính thể tích \(V\) khối tứ diện \(OABM\).

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

Media VietJack

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{OA \bot OB}\\{OA \bot OC}\end{array}} \right. \Rightarrow OA \bot \left( {OBC} \right)\)
Thể tích khối tứ diện \(OABM\)\(V = \frac{1}{3}.OA.{S_{\Delta OBM}} = \frac{1}{3}.OA.\frac{1}{2}.{S_{\Delta OBC}} = \frac{1}{6}.OA.\frac{1}{2}.OB.OC = \frac{1}{{12}}.2a.3a.8a = 4{a^3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\).

Xem đáp án » 26/02/2023 58,889

Câu 2:

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 2;\,3} \right]\) và có đồ thị như hình vẽ dưới đây . Gọi \(m,\,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhẩt của hàm số trên đoạn \(\left[ { - 2;\,3} \right]\). Giá trị của \(m.M\) bằng bao nhiêu?
Media VietJack

Xem đáp án » 26/02/2023 13,236

Câu 3:

Cho hàm số \(f\left( x \right)\)xác định và liên tục trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\)có bảng biến thiên như sau:

Media VietJack

Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right)}}\)có tất cả bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

Xem đáp án » 26/02/2023 12,949

Câu 4:

Hàm số \(f\left( x \right)\)có đạo hàm trên \(\mathbb{R}\)\(f'\left( x \right) > 0,\forall x \in \left( {0; + \infty } \right)\), biết \(f\left( 2 \right) = 1\). Khẳng định nào sau đây có thể xảy ra?

Xem đáp án » 26/02/2023 11,895

Câu 5:

Đường cong trong hình vẽ bên là đồ thị hàm số nào dưới đây
Media VietJack

Xem đáp án » 26/02/2023 10,781

Câu 6:

Cho hàm số \[y = \frac{{mx - {m^2} - 2}}{{ - x + 1}}\] (\[m\] là tham số thực) thỏa mãn \[\mathop {\max }\limits_{\left[ { - 4; - 2} \right]} y = \frac{{ - 1}}{3}\]. Mệnh đề nào sau dưới đây đúng?

Xem đáp án » 26/02/2023 9,428

Câu 7:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số\(y = \frac{1}{3}{x^3} + 2{x^2} - \left( {2m - 3} \right)x + 4\) đồng biến trên \(\left( { - 1; + \infty } \right)\).

Xem đáp án » 26/02/2023 8,929

Bình luận


Bình luận