Câu hỏi:

26/02/2023 684

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\), \(N\), \(K\) lần lượt là trung điểm của các cạnh \(AB\), \(BC\), \(SA\). Biết mặt phẳng \(\left( {MNK} \right)\) chia khối chóp \(S.ABCD\) thành hai phần có thể tích là \({V_1},{V_2}\) \(\left( {{V_1} < {V_2}} \right)\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Media VietJack

Trong mặt phẳng \(\left( {ABCD} \right)\), kéo dài \(MN\) cắt \(DA\), \(DC\) lần lượt tại \(F\), \(E\).
Trong mặt phẳng \(\left( {SAD} \right)\), gọi \(FK \cap SD = Q\). Trong mặt phẳng \(\left( {SCD} \right)\), gọi \(QE \cap SC = P\).
Suy ra thiết diện là ngũ giác \(MNPQK\)\(MN{\rm{//}}AC\;{\rm{//\;}}PK\).
Đặt \(h = d\left( {S,\left( {ABCD} \right)} \right)\) \( \Rightarrow d\left( {K,\left( {ABCD} \right)} \right) = d\left( {P,\left( {ABCD} \right)} \right) = \frac{1}{2}h\)
Ta có: \(FA = BN = \frac{1}{2}AD \Rightarrow \frac{{FD}}{{FA}} = 3\).
Áp dụng định lý Menelaus cho tam giác \(SAD\), suy ra
\(\frac{{QS}}{{QD}}.\frac{{FD}}{{FA}}.\frac{{KA}}{{KS}} = 1 \Rightarrow \frac{{QS}}{{QD}} = \frac{1}{3} \Rightarrow \frac{{QD}}{{SD}} = \frac{3}{4} \Rightarrow d\left( {Q,\left( {ABCD} \right)} \right) = \frac{3}{4}h\)
Mặt khác: \({S_{FAM}} = {S_{NCE}} = {S_{BMN}} = \frac{1}{4}{S_{ABC}} = \frac{1}{8}{S_{ABCD}} \Rightarrow {S_{DEF}} = \frac{9}{8}{S_{ABCD}}\)
Suy ra thể tích của khối đa diện không chứa đỉnh S là
\(V = {V_{QDEF}} - {V_{KAMF}} - {V_{PECN}} = \frac{1}{3}\left( {\frac{3}{4}h.\frac{9}{8}S - \frac{1}{2}h.\frac{1}{8}S - \frac{1}{2}h.\frac{1}{8}S} \right)\)
\( = \frac{1}{3}.\frac{{23}}{{32}}.h.{S_{ABCD}} = \frac{{23}}{{32}}{V_{ABCD}} = {V_2}\)
\( \Rightarrow {V_1} = \frac{9}{{32}} \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{9}{{23}}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Tính giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\).

Lời giải

Lời giải

Chọn B
Cách 1: (Dùng bất đẳng thức CauChy)
\(y = 3x + \frac{4}{{{x^2}}} = \frac{{3x}}{2} + \frac{{3x}}{2} + \frac{4}{{{x^2}}} \ge 3\sqrt[3]{{\frac{{3x}}{2}.\frac{{3x}}{2}.\frac{4}{{{x^2}}}}} = 3\sqrt[3]{9}\) (do \(x > 0\))
Dấu xảy ra khi \(\frac{{3x}}{2} = \frac{4}{{{x^2}}} \Leftrightarrow x = \sqrt[3]{{\frac{8}{3}}}\).
Vậy \(\mathop {{\rm{min}}}\limits_{\left( {0; + \infty } \right)} y = 3\sqrt[3]{9}\)
Cách 2: (Dùng đạo hàm)
Xét hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\)
Ta có \(y = 3x + \frac{4}{{{x^2}}} \Rightarrow y{\rm{'}} = 3 - \frac{8}{{{x^3}}}\)
Cho \(y{\rm{'}} = 0 \Leftrightarrow \frac{8}{{{x^3}}} = 3 \Leftrightarrow {x^3} = \frac{8}{3} \Leftrightarrow x = \sqrt[3]{{\frac{8}{3}}}\)
Media VietJack
\( \Rightarrow \mathop {{\rm{min}}}\limits_{\left( {0; + \infty } \right)} y = y\left( {\sqrt[3]{{\frac{8}{3}}}} \right) = 3\sqrt[3]{9}\).

Lời giải

Lời giải

Chọn D
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2 \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{f\left( x \right)}} = \frac{1}{2}\); \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - 2 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{f\left( x \right)}} = - \frac{1}{2}\).
Suy ra đồ thị hàm số \(y = \frac{1}{{f\left( x \right)}}\)có hai đường tiệm cận ngang là \(y = \frac{1}{2}\)\(y = - \frac{1}{2}\).
Dựa vào bảng biến thiên của hàm số \(y = f\left( x \right)\)ta thấy: phương trình \(f\left( x \right) = 0\)có hai nghiệm phân biệt \({x_1} < - 1 < {x_2}\).
Khi đó: \(f\left( {{x_1}} \right) = f\left( {{x_2}} \right) = 0\).
Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {x_1}^ - } f\left( x \right) = 0\\f\left( x \right) > 0\,khi\,x \to {x_1}^ - \end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {x_1}^ - } \frac{1}{{f\left( x \right)}} = + \infty \)\(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {x_2}^ - } f\left( x \right) = 0\\f\left( x \right) > 0\,khi\,x \to {x_2}^ - \end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {x_2}^ - } \frac{1}{{f\left( x \right)}} = + \infty \).
Vậy đồ thị hàm số \(y = \frac{1}{{f\left( x \right)}}\)có hai tiệm cận đứng là đường thẳng \(x = {x_1}\)\(x = {x_2}\).

Câu 4

Hàm số \(f\left( x \right)\)có đạo hàm trên \(\mathbb{R}\)\(f'\left( x \right) > 0,\forall x \in \left( {0; + \infty } \right)\), biết \(f\left( 2 \right) = 1\). Khẳng định nào sau đây có thể xảy ra?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Đường cong trong hình vẽ bên là đồ thị hàm số nào dưới đây
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tìm tập hợp tất cả các giá trị của tham số m để hàm số\(y = \frac{1}{3}{x^3} + 2{x^2} - \left( {2m - 3} \right)x + 4\) đồng biến trên \(\left( { - 1; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay