Câu hỏi:

26/02/2023 665

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\), \(N\), \(K\) lần lượt là trung điểm của các cạnh \(AB\), \(BC\), \(SA\). Biết mặt phẳng \(\left( {MNK} \right)\) chia khối chóp \(S.ABCD\) thành hai phần có thể tích là \({V_1},{V_2}\) \(\left( {{V_1} < {V_2}} \right)\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Media VietJack

Trong mặt phẳng \(\left( {ABCD} \right)\), kéo dài \(MN\) cắt \(DA\), \(DC\) lần lượt tại \(F\), \(E\).
Trong mặt phẳng \(\left( {SAD} \right)\), gọi \(FK \cap SD = Q\). Trong mặt phẳng \(\left( {SCD} \right)\), gọi \(QE \cap SC = P\).
Suy ra thiết diện là ngũ giác \(MNPQK\)\(MN{\rm{//}}AC\;{\rm{//\;}}PK\).
Đặt \(h = d\left( {S,\left( {ABCD} \right)} \right)\) \( \Rightarrow d\left( {K,\left( {ABCD} \right)} \right) = d\left( {P,\left( {ABCD} \right)} \right) = \frac{1}{2}h\)
Ta có: \(FA = BN = \frac{1}{2}AD \Rightarrow \frac{{FD}}{{FA}} = 3\).
Áp dụng định lý Menelaus cho tam giác \(SAD\), suy ra
\(\frac{{QS}}{{QD}}.\frac{{FD}}{{FA}}.\frac{{KA}}{{KS}} = 1 \Rightarrow \frac{{QS}}{{QD}} = \frac{1}{3} \Rightarrow \frac{{QD}}{{SD}} = \frac{3}{4} \Rightarrow d\left( {Q,\left( {ABCD} \right)} \right) = \frac{3}{4}h\)
Mặt khác: \({S_{FAM}} = {S_{NCE}} = {S_{BMN}} = \frac{1}{4}{S_{ABC}} = \frac{1}{8}{S_{ABCD}} \Rightarrow {S_{DEF}} = \frac{9}{8}{S_{ABCD}}\)
Suy ra thể tích của khối đa diện không chứa đỉnh S là
\(V = {V_{QDEF}} - {V_{KAMF}} - {V_{PECN}} = \frac{1}{3}\left( {\frac{3}{4}h.\frac{9}{8}S - \frac{1}{2}h.\frac{1}{8}S - \frac{1}{2}h.\frac{1}{8}S} \right)\)
\( = \frac{1}{3}.\frac{{23}}{{32}}.h.{S_{ABCD}} = \frac{{23}}{{32}}{V_{ABCD}} = {V_2}\)
\( \Rightarrow {V_1} = \frac{9}{{32}} \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{9}{{23}}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\).

Xem đáp án » 26/02/2023 60,171

Câu 2:

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 2;\,3} \right]\) và có đồ thị như hình vẽ dưới đây . Gọi \(m,\,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhẩt của hàm số trên đoạn \(\left[ { - 2;\,3} \right]\). Giá trị của \(m.M\) bằng bao nhiêu?
Media VietJack

Xem đáp án » 26/02/2023 14,687

Câu 3:

Cho hàm số \(f\left( x \right)\)xác định và liên tục trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\)có bảng biến thiên như sau:

Media VietJack

Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right)}}\)có tất cả bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

Xem đáp án » 26/02/2023 13,835

Câu 4:

Hàm số \(f\left( x \right)\)có đạo hàm trên \(\mathbb{R}\)\(f'\left( x \right) > 0,\forall x \in \left( {0; + \infty } \right)\), biết \(f\left( 2 \right) = 1\). Khẳng định nào sau đây có thể xảy ra?

Xem đáp án » 26/02/2023 13,298

Câu 5:

Đường cong trong hình vẽ bên là đồ thị hàm số nào dưới đây
Media VietJack

Xem đáp án » 26/02/2023 10,877

Câu 6:

Cho hàm số \[y = \frac{{mx - {m^2} - 2}}{{ - x + 1}}\] (\[m\] là tham số thực) thỏa mãn \[\mathop {\max }\limits_{\left[ { - 4; - 2} \right]} y = \frac{{ - 1}}{3}\]. Mệnh đề nào sau dưới đây đúng?

Xem đáp án » 26/02/2023 9,819

Câu 7:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số\(y = \frac{1}{3}{x^3} + 2{x^2} - \left( {2m - 3} \right)x + 4\) đồng biến trên \(\left( { - 1; + \infty } \right)\).

Xem đáp án » 26/02/2023 9,208