Cho khối bát diện đều. Gọi a,b,c lần lượt là số đỉnh, số cạnh và số mặt của khối bát diện đều. Chọn khẳng định đúng.
Cho khối bát diện đều. Gọi a,b,c lần lượt là số đỉnh, số cạnh và số mặt của khối bát diện đều. Chọn khẳng định đúng.
Quảng cáo
Trả lời:


Ta có số đỉnh, số cạnh và số mặt của khối bát diện đều lần lượt là 6, 12, 8.
Suy ra .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì nên
+) Xét .
BBT
![Gọi S là tập hợp các giá trị của tham số m để giá trị nhỏ nhất của hàm số y= ( x^2+x+m^2)^2 trên đoạn[-2,2] bằng 4. Tính tổng các phần tử của S. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2023/02/blobid5-1677558023.png)
Từ BBT suy ra .
+) Xét
BBT
![Gọi S là tập hợp các giá trị của tham số m để giá trị nhỏ nhất của hàm số y= ( x^2+x+m^2)^2 trên đoạn[-2,2] bằng 4. Tính tổng các phần tử của S. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2023/02/blobid6-1677558033.png)
Từ BBT suy ra .
Vậy Do đó .
Lời giải
Đồ thị hàm số có tiệm cận đứng là x=-2 ; và tiệm cận ngang là y=2.
Vậy tọa độ giao điểm của hai đường tiệm cận có tọa độ là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.