Câu hỏi:

28/02/2023 363

Cho hàm số y=x2x1 có đồ thị (C) và điểm M3;1. Gọi D là tập hợp tất cả các đường thẳng đi qua điểm M và cắt đồ thị (C) tại hai điểm phân biệt A,B sao cho MB=3MA. Tính tổng tất cả các hệ số góc của các đường thẳng thuộc D.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi đường thẳng thuộc D có dạng: d:y=kx31=kx3k1.

Phương trình hoành độ giao điểm:

x2x1=kx3k1x2=kx3k1x1kx222k+1x+3k+3=0(1)

Để d cắt (C) tại hai điểm phân biệt A,B thì (1) có 2 nghiệm phân biệt khác 1k02k+12k3k+3>0k.1222k+1.1+3k+30k0k2+k+1>0k0, tức là

.

Khi đó phương trình (1) có 2 nghiệm thỏa hệ thức Viet:

.x1+x2=4k+2k(2)x1x2=3k+3k(3)

Gọdi Ax1;kx13k1MA=x13;kx13k.

Bx2;kx23k1MB=x23;kx23k.

Ta có MB=3MAMB=3MAMB=3MA.

Trường hợp 1: MB=3MAx23=3x13x2=3x16(4).

Từ (2)và (4) suy ra x1+3x16=4k+2kx2=3x16x1=10k+24kx2=6k+64k

Thay vào (3), ta được

10k+24k6k+64k=3k+3k12k2+24k+12=0k=1

Trường hợp 2: MB=3MAx23=3x13x2=3x1+12(5).

Từ  (2)và (5)  suy ra x13x1+12=4k+2kx2=3x1+12x1=4k1kx2=3k

Thay vào (3), ta được:

4k1k3k=3k+3k3k29k+3=0k=3+52k=352

Vậy tổng tất cả các hệ số góc của các đường thẳng thuộc D là

S=1+3+52+352=2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

miny2;2=4 nên x2+x+m24x2+x+m2x2+x+m2mx2x+2=f(x)mx2x2=g(x),x2;2.

+) Xét f(x)=x2x+2,x2;2.

f'(x)=2x1;f'(x)=0x=12

BBT

Gọi S là tập hợp các giá trị của tham số m để giá trị nhỏ nhất của hàm số y= ( x^2+x+m^2)^2 trên đoạn[-2,2]  bằng 4. Tính tổng các phần tử của S. (ảnh 1)


Từ BBT suy ra m94miny2;2=4m=94.

+) Xét g(x)=x2x2,x2;2.

g'(x)=2x1;g'(x)=0x=12

BBT

Gọi S là tập hợp các giá trị của tham số m để giá trị nhỏ nhất của hàm số y= ( x^2+x+m^2)^2 trên đoạn[-2,2]  bằng 4. Tính tổng các phần tử của S. (ảnh 2)


Từ BBT suy ra m8miny2;2=4m=8.

Vậy S=94;8 Do đó m1+m2=948=234.

Lời giải

Đồ thị hàm số có tiệm cận đứng là x=-2 ; và tiệm cận ngang là y=2.

Vậy tọa độ giao điểm của hai đường tiệm cận có tọa độ là I2;2

Câu 3

Đồ thị sau là đồ thị của hàm số nào dưới đây?

Đồ thị sau là đồ thị của hàm số nào dưới đây? A. y= 2x-3/ 2x-2 (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay