Câu hỏi:

28/02/2023 634

Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại B và C. Hai mặt phẳng (SBC) và ( SBD) cùng vuông góc với mặt phẳng ABCD. Biết AB=4a;BC=CD=a và khoảng cách từ trung điểm E của BC đến mặt phẳng SADbằng  5a2652. Tính thể tích khối chóp SABCD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án       A.

Do hai mặt phẳng SBC và SBDcùng vuông góc với mặt phẳng ABCD nên SBABCD.

Gọi Q là giao điểm của BC,AD. Gọi F là trung điểm AD.

Kẻ BMAD,BISM. Dễ thấy BImpSAD

Ta códE,SADdB,SAD=EQBQ=EFBA

dE,SAD=EFBA.BI=a+4a24a.BIBI=85dE,SAD=855a2652=8a2652

Xét tam giác vuông BAQ có1BM2=1BA2+1BQ2=14a2+14a32=58a2.

Xét tam giác vuông SBM  có 1SB2=1BI21BM2=18a2652258a2=1a2

SB=a.

Vậy V=13SB.SABCD=13.a.4a+aa2=5a36

 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

miny2;2=4 nên x2+x+m24x2+x+m2x2+x+m2mx2x+2=f(x)mx2x2=g(x),x2;2.

+) Xét f(x)=x2x+2,x2;2.

f'(x)=2x1;f'(x)=0x=12

BBT

Gọi S là tập hợp các giá trị của tham số m để giá trị nhỏ nhất của hàm số y= ( x^2+x+m^2)^2 trên đoạn[-2,2]  bằng 4. Tính tổng các phần tử của S. (ảnh 1)


Từ BBT suy ra m94miny2;2=4m=94.

+) Xét g(x)=x2x2,x2;2.

g'(x)=2x1;g'(x)=0x=12

BBT

Gọi S là tập hợp các giá trị của tham số m để giá trị nhỏ nhất của hàm số y= ( x^2+x+m^2)^2 trên đoạn[-2,2]  bằng 4. Tính tổng các phần tử của S. (ảnh 2)


Từ BBT suy ra m8miny2;2=4m=8.

Vậy S=94;8 Do đó m1+m2=948=234.

Lời giải

Đồ thị hàm số có tiệm cận đứng là x=-2 ; và tiệm cận ngang là y=2.

Vậy tọa độ giao điểm của hai đường tiệm cận có tọa độ là I2;2

Câu 3

Đồ thị sau là đồ thị của hàm số nào dưới đây?

Đồ thị sau là đồ thị của hàm số nào dưới đây? A. y= 2x-3/ 2x-2 (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay