Câu hỏi:

01/03/2023 402 Lưu

Đường cong ở hình vẽ dưới đây là đồ thị của hàm số \(y = \frac{{ax + b}}{{cx + d}}\) với \(a,b,c,d\) là các số thực.

Media VietJack

Mệnh đề nào dưới đây đúng ?

A. \(y' < 0,\forall x \ne - 1.\)
B. \(y' > 0,\forall x \in \mathbb{R}.\)
C. \(y' > 0,\forall x \ne 2.\)
D. \(y' > 0,\forall x \ne - 1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Lời giải
Chọn D
Từ hình vẽ ta suy ra: tiệm cận đứng của đồ thị hàm số có phương trình \(x = - 1\), nên hàm số đã cho xác định khi và chỉ khi\(x \ne - 1.\)
Trên mỗi khoảng \(\left( { - \infty ; - 1} \right),\,\left( { - 1; + \infty } \right)\) đồ thị hàm số là một đường đi lên từ trái sang phải, nên hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right),\,\left( { - 1; + \infty } \right)\).
Vậy \(y' > 0,\forall x \ne - 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải
Chọn D

Media VietJack

Thể tích \({V_{S.ABC}} = \frac{1}{3}{S_{ABC}}.SA = \frac{1}{3}.\frac{1}{2}BA.BC.SA = \frac{1}{6}a.2a.3a = {a^3}\).

Câu 2

A. \(m = 1\).
B. \(\left[ \begin{array}{l}m > 1\\m < - 1\end{array} \right.\).
C. \( - 1 < m < 1\).
D. \(m = - 1\).

Lời giải

Lời giải
Chọn C
+ Giả sử \(x = {x_0}\) là một TCĐ của đồ thị hàm số đã cho. Khi đó\(\,\mathop {\lim y}\limits_{x \to {x_0}} = + \infty \) hoặc \(\,\mathop {\lim y}\limits_{x \to {x_0}} = - \infty \). Hay \({x_0}\) phải là nghiệm của phương trình \({x^2} - 2mx + 1 = 0\).
Nên để đồ thị của hàm số đã cho không có tiệm cận đứng thì phương trình \({x^2} - 2mx + 1 = 0\) phải vô nghiệm hay \( - 1 < m < 1\).

Câu 3

A. \(y = - {x^4} + 2{x^2}\).
B. \(y = {x^4} - 2{x^2} - 1\).
C. \(y = {x^4} - 2{x^2} + x\).
D. \(y = {x^4} - 2{x^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.  \({\rm{max}}y = 1\).
B.  \({\rm{max}}y = 2\).
C.  \({\rm{max}}y = 0\).
D. Hàm số không có giá trị lớn nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP