Câu hỏi:
12/07/2024 5,506
Gọi T là tổng, H là hiệu của hai đa thức 3x2y – 2xy2 + xy và –2x2y + 3xy2 + 1. Khi đó:
A. T = x2y – xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
B. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
C. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 – xy – 1.
D. T = x2y + xy2 + xy – 1 và H = 5x2y + 5xy2 + xy – 1.
Gọi T là tổng, H là hiệu của hai đa thức 3x2y – 2xy2 + xy và –2x2y + 3xy2 + 1. Khi đó:
A. T = x2y – xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
B. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
C. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 – xy – 1.
D. T = x2y + xy2 + xy – 1 và H = 5x2y + 5xy2 + xy – 1.
Câu hỏi trong đề: Giải SGK Toán 8 KNTT Bài tập cuối chương 1 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có:
• T = (3x2y – 2xy2 + xy) + (–2x2y + 3xy2 + 1)
= 3x2y – 2xy2 + xy – 2x2y + 3xy2 + 1
= (3x2y – 2x2y) + (3xy2 – 2xy2) + xy + 1
= x2y + xy2 + xy + 1.
• H = (3x2y – 2xy2 + xy) – (–2x2y + 3xy2 + 1)
= 3x2y – 2xy2 + xy + 2x2y – 3xy2 – 1
= (3x2y + 2x2y) – (3xy2 + 2xy2) + xy – 1
= 5x2y – 5xy2 + xy – 1.
Vậy T = x2y + xy2 + xy + 1; H = 5x2y – 5xy2 + xy – 1.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cắt miếng bìa hình chữ nhật để làm một chiếc hộp (không nắp) thì chiếc hộp có:
• Chiều dài của đáy chiếc hộp là: y – 2x (cm)
• Chiều rộng của đáy chiếc hộp là: z – 2x (cm)
• Chiều rộng của chiếc hộp là x (cm)
Đa thức biểu thị thể tích của chiếc hộp là:
x(y – 2x)(z – 2x) = (xy – 2x2)(z – 2x) = xyz – 2x2y – 2x2z + 4x3.
Đa thức xyz – 2x2y – 2x2z + 4x3 có bậc là 3.
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.