Câu hỏi:
13/07/2024 1,698Hình chữ nhật A có chiều rộng 2x (cm), chiều dài gấp k (k > 1) lần chiều rộng. Hình chữ nhật B có chiều dài 3x (cm). Muốn hai hình chữ nhật này có diện tích bằng nhau thì B phải có chiều rộng bằng bao nhiêu?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Diện tích hình chữ nhật A là: SA = 2x.2kx = 4kx2 (cm2).
Gọi chiều rộng của hình chữ nhật B là R (cm).
Khi đó diện tích của hình chữ nhật B là: SB = R.3x (cm2).
Để hai hình chữ nhật này có diện tích bằng nhau thì SA = SB
Do đó 4kx2 = R.3x
Suy ra R = (4kx2) : (3x)
R = (4 : 3).k.(x2 : x) = kx (cm).
Vậy để hai hình chữ nhật này có diện tích bằng nhau thì chiều rộng của hình chữ nhật B là kx cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trên một dòng sông, để đi được 10 km, một chiếc xuồng tiêu tốn a lít dầu khi xuôi dòng và tiêu tốn (a + 2) lít dầu khi ngược dòng. Viết biểu thức biểu thị số lít dầu mà xuồng tiêu tốn để đi từ bến A ngược dòng đến bến B, rồi quay lại bến A. Biết khoảng cách giữa hai bến là b km.
Câu 2:
Tìm độ dài cạnh còn thiếu của tam giác ở Hình 7, biết rằng tam giác có chu vi bằng 7x + 5y.
Câu 3:
Một bức tường được trang trí bởi hai tấm giấy dán có cùng chiều cao 2x (m) và có diện tích lần lượt là 2x2 (m2) và 5xy (m2).
a) Tính chiều rộng của mỗi tấm giấy, từ đó tìm chiều rộng của bức tường.
Câu 4:
Tính giá trị của biểu thức:
a) 3x2y – (3xy – 6x2y) + (5xy – 9x2y) tại x = , y = ;
Câu 6:
a) Tính chiều dài của hình chữ nhật có diện tích bằng 6xy + 10y2 và chiều rộng bằng 2y.
Câu 7:
Tính giá trị của biểu thức:
b) x(x – 2y) – y(y2 – 2x) tại x = 5, y = 3.
về câu hỏi!