Câu hỏi:

13/07/2024 33,208 Lưu

Hình thang trong Hình 3.23 có là hình thang cân không? Vì sao

Hình thang trong Hình 3.23 có là hình thang cân không? Vì sao?   (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để hình thang ABCD là hình thang cân thì A^=B^=120°;  C^=D^=80°.

Suy ra A^+B^+C^+D^=120°+120°+80°+80°=400°>360° (không thỏa mãn định lí tổng bốn góc trong một tứ giác).

Khi đó, ACBD không phải là tứ giác.

Do đó ACBD cũng không phải là hình thang cân.

Quachthihongai@gmail.com Quach

Quachthihongai@gmail.com Quach

Giải xàm

hildegard akaraxia

hildegard akaraxia

mk thấy dễ hiểu mà

Quachthihongai@gmail.com Quach

Quachthihongai@gmail.com Quach

Giải khó hiểu, nên hiểu đề hơn

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi O là giao điểm của AC và BD.

Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông (ảnh 1)

Xét ∆DOE và ∆COE có:

ODE^=OCE^=90° (vì OD DE; OC CE)

EC = ED (giả thiết)

Cạnh OE chung

Do đó ∆DOE = ∆COE (cạnh huyền – cạnh góc vuông).

Suy ra OC = OD (hai cạnh tương ứng).

Do đó tam giác OCD cân tại O nên C^1=D^1.

Vì ABCD là hình thang nên AB // CD suy ra A^1=C^1;  B^1=D^1 (cặp góc so le trong).

Do đó A^1=  B^1 (vì C^1=D^1).

Suy ra tam giác OAB cân tại O nên OA = OB.

Xét ∆OAD và ∆OBC có:

OA = OB (chứng minh trên)

AOD^=BOC^ (hai góc đối đỉnh)

OC = OD (chứng minh trên)

Do đó ∆OAD = ∆OBC (c.g.c)

Suy ra C^2=D^2 (hai góc tương ứng).

Ta có ADC^=D^1+D^2;  BCD^=C^1+C^2.

C^1=D^1 ;C^2=D^2 nên ADC^=BCD^.

Hình thang ABCD có ADC^=BCD^ nên ABCD là hình thang cân.

Lời giải

Vì ABCD là hình thang cân nên DAB^=ABC^;  C^=D^;  AD=BC.

Theo đề bài, ta có AE, BE lần lượt là tia phân giác của BAD^ ABC^.

Suy ra A^1=A^2;  B^1=B^2.

DAB^=ABC^ nên A^1=A^2=B^1=B^2.

Xét tam giác EAB cân tại E (vì A^1=B^1) nên EA = EB.

Xét ∆ADE và ∆BCE có:

EA = EB (chứng minh trên)

A^2=B^2 (chứng minh trên)

AD = BC (chứng minh trên)

Do đó ∆ADE = ∆BCE (c.g.c).

Suy ra EC = ED (hai cạnh tương ứng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP