Câu hỏi:

13/07/2024 16,075

Tính số đo các góc của tứ giác ABCD trong Hình 3.26.

Tính số đo các góc của tứ giác ABCD trong Hình 3.26. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

* Xét tam giác ABD cân tại A (vì AB = AD) ta có:

ABD^=ADB^=40°.

A^+ABD^+ADB^=180°.

Suy ra A^=180°ABD^ADB^=180°40°40°=100°.

Ta có ADB^+BDC^=120° suy ra BDC^=120°ADB^=120°40°=80°.

* Xét tam giác BCD cân tại C (vì BC = CD) ta có:

CBD^=CDB^=80°.

• C^+CBD^+CDB^=180°

Suy ra C^=180°CBD^CDB^=180°80°80°=20°.

Ta có: ABC^=ABD^+CBD^=40°+80°=120°.

Vậy số đo các góc của tứ giác ABCD là A^=100°; ABC^=120° ;C^=20°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho M là một điểm nằm trong tam giác đều ABC. Qua M kẻ các đường thẳng song song (ảnh 1)Cho M là một điểm nằm trong tam giác đều ABC. Qua M kẻ các đường thẳng song song (ảnh 2)

a) Vì tam giác ABC đều nên BAC^=ABC^=ACB^=60°.

Vì PM // BC nên ABC^=APM^=60°.

Tứ giác APMR là hình thang (vì MR // AP) có ABC^=APM^.

Do đó tứ giác APMR là hình thang cân.

Lời giải

Cho hình thang cân ABCD (AB // CD) có AB = AD. Biết góc ABD = 30 độ (ảnh 1)

Xét tam giác ABD cân tại A (vì AB = AD), ta có:

• ABD^=ADB^=30°

A^+ABD^+ADB^=180° hay A^+30°+30°=180°

Suy ra A^=180°30°30°=120°.

Vì AB // CD nên ADB^=CBD^=30° (hai góc so le trong).

Do đó ABC^=ABD^+CBD^=30°+30°=60°.

Vì tứ giác ABCD là hình thang cân nên ABC^=C^=60°.

Ta có: A^+ABC^+C^+ADC^=360°.

120°+60°+60°+ADC^=360°

240°+ADC^=360°

Suy ra ADC^=360°240°=120°.

Vậy số đo các góc của hình thang ABCD là A^=120°; ABC^=60°; ABC^=60°; ADC^=120°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP