Câu hỏi:
11/07/2024 2,525
Cho dãy số (un) với \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n}\).
a) Biểu diễn năm số hạng đầu của dãy số này trên trục số.
b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ un đến 0 nhỏ hơn 0,01?
Cho dãy số (un) với \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n}\).
a) Biểu diễn năm số hạng đầu của dãy số này trên trục số.
b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ un đến 0 nhỏ hơn 0,01?
Quảng cáo
Trả lời:
Lời giải:
a) Năm số hạng đầu của dãy số (un) đã cho là \({u_1} = \frac{{{{\left( { - 1} \right)}^1}}}{1} = - 1\); \({u_2} = \frac{{{{\left( { - 1} \right)}^2}}}{2} = \frac{1}{2}\); \({u_3} = \frac{{{{\left( { - 1} \right)}^3}}}{3} = - \frac{1}{3}\); \({u_4} = \frac{{{{\left( { - 1} \right)}^4}}}{4} = \frac{1}{4}\); \({u_5} = \frac{{{{\left( { - 1} \right)}^5}}}{5} = - \frac{1}{5}\).
Biểu diễn các số hạng này trên trục số, ta được:
b) Khoảng cách từ un đến 0 là \(\left| {\frac{{{{\left( { - 1} \right)}^n}}}{n}} \right| = \frac{{{1^n}}}{n} = \frac{1}{n},\,\,\forall n \in {\mathbb{N}^*}\).
Ta có: \(\frac{1}{n} < 0,01\)\( \Leftrightarrow \frac{1}{n} < \frac{1}{{100}} \Leftrightarrow n > 100\).
Vậy bắt đầu từ số hạng thứ 101 của dãy thì khoảng cách từ un đến 0 nhỏ hơn 0,01.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày đầu tiên là 150 mg.
Sau ngày đầu, trước mỗi lần uống, hàm lượng thuốc cũ trong cơ thể vẫn còn 5%.
Do đó, lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ hai là
150 + 150 . 5% = 150(1 + 0,05).
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ ba là
150 + 150(1 + 0,05) . 5% = 150 + 150(0,05 + 0,052) = 150(1 + 0,05 + 0,052)
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ tư là
150 + 150(1 + 0,05 + 0,052) . 5% = 150(1 + 0,05 + 0,052 + 0,053)
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ năm là
150 + 150(1 + 0,05 + 0,052 + 0,053) . 5% = 150(1 + 0,05 + 0,052 + 0,053 + 0,054)
= 157,8946875 (mg).
Cứ tiếp tục như vậy, ta ước tính lượng thuốc trong cơ thể bệnh nhân nếu bệnh nhân sử dụng thuốc trong một thời gian dài là
S = 150(1 + 0,05 + 0,052 + 0,053 + 0,054 + ...) (mg)
Lại có 1 + 0,05 + 0,052 + 0,053 + 0,054 + ... là tổng của cấp số nhân lùi vô hạn với số hạng đầu u1 = 1 và công bội q = 0,05.
Do đó, 1 + 0,05 + 0,052 + 0,053 + 0,054 + ... = \(\frac{{{u_1}}}{{1 - q}} = \frac{1}{{1 - 0,05}} = \frac{{20}}{{19}}\).
Suy ra S = \(150 \cdot \frac{{20}}{{19}} = \frac{{400}}{{361}}\) (mg).
Lời giải
Lời giải:
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}\left( {1 + \frac{1}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \frac{1}{{{n^2}}}} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{1 + \frac{1}{n} + \frac{1}{{{n^2}}}}}{{2 + \frac{1}{{{n^2}}}}} = \frac{1}{2}\).
b) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {{n^2} + 2n} \right) - {n^2}}}{{\sqrt {{n^2} + 2n} + n}}\)
\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{\sqrt {{n^2}\left( {1 + \frac{2}{n}} \right)} + n}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{n\sqrt {1 + \frac{2}{n}} + n}}\)
\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{n\left( {\sqrt {1 + \frac{2}{n}} + 1} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{2}{{\sqrt {1 + \frac{2}{n}} + 1}} = \frac{2}{{\sqrt 1 + 1}} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.