Câu hỏi:
11/07/2024 1,639Cho dãy số (un) với \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n}\).
a) Biểu diễn năm số hạng đầu của dãy số này trên trục số.
b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ un đến 0 nhỏ hơn 0,01?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
a) Năm số hạng đầu của dãy số (un) đã cho là \({u_1} = \frac{{{{\left( { - 1} \right)}^1}}}{1} = - 1\); \({u_2} = \frac{{{{\left( { - 1} \right)}^2}}}{2} = \frac{1}{2}\); \({u_3} = \frac{{{{\left( { - 1} \right)}^3}}}{3} = - \frac{1}{3}\); \({u_4} = \frac{{{{\left( { - 1} \right)}^4}}}{4} = \frac{1}{4}\); \({u_5} = \frac{{{{\left( { - 1} \right)}^5}}}{5} = - \frac{1}{5}\).
Biểu diễn các số hạng này trên trục số, ta được:
b) Khoảng cách từ un đến 0 là \(\left| {\frac{{{{\left( { - 1} \right)}^n}}}{n}} \right| = \frac{{{1^n}}}{n} = \frac{1}{n},\,\,\forall n \in {\mathbb{N}^*}\).
Ta có: \(\frac{1}{n} < 0,01\)\( \Leftrightarrow \frac{1}{n} < \frac{1}{{100}} \Leftrightarrow n > 100\).
Vậy bắt đầu từ số hạng thứ 101 của dãy thì khoảng cách từ un đến 0 nhỏ hơn 0,01.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hình vuông cạnh 1 (đơn vị độ dài). Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (H.5.2). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi u1, u2, ..., un, ... lần lượt là độ dài cạnh của các hình vuông được tô màu.
a) Tính tổng Sn = u1 + u2 + ... + un.
b) Tìm S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\).
Câu 3:
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}}\);
b) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right)\).
Câu 4:
Câu 5:
Tìm giới hạn của các dãy số cho bởi:
a) \({u_n} = \frac{{{n^2} + 1}}{{2n - 1}}\);
b) \({v_n} = \sqrt {2{n^2} + 1} - n\).
Câu 6:
Cho hai dãy số (un) và (vn) với \({u_n} = 2 + \frac{1}{n},\,\,{v_n} = 3 - \frac{2}{n}\).
Tính và so sánh: \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right)\) và \(\mathop {\lim }\limits_{n \to + \infty } {u_n} + \mathop {\lim }\limits_{n \to + \infty } {v_n}\).
Câu 7:
về câu hỏi!