Câu hỏi:

12/07/2024 1,584

Để đơn giản, ta giả sử Achilles chạy với vận tốc 100 km/h, vận tốc của rùa là 1 km/h và khoảng cách ban đầu là a = 100 (km).

a) Tính thời gian t1, t2, ..., tn, ... tương ứng để Achilles đi từ A1 đến A2, từ A2 đến A3, ... từ An đến An + 1, ...

b) Tính tổng thời gian cần thiết để Achilles chạy hết các quãng đường A1A2, A2A3, ..., A­nAn + 1, ..., tức là thời gian cần thiết để Achilles đuổi kịp rùa.

c) Sai lầm trong lập luận của Zeno là ở đâu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

Ta có: Achilles chạy với vận tốc 100 km/h, vận tốc của rùa là 1 km/h.

a) Để chạy hết quãng đường từ A1 đến A2 với A1A2 = a = 100 (km), Achilles phải mất thời gian \({t_1} = \frac{{100}}{{100}} = 1\)(h). Với thời gian t1 này, rùa đã chạy được quãng đường A2A3 = 1 (km).

Để chạy hết quãng đường từ A2 đến A3 với A2A3 = 1 (km), Achilles phải mất thời gian \({t_2} = \frac{1}{{100}}\)(h). Với thời gian t2 này, rùa đã chạy được quãng đường A3A4 = \(\frac{1}{{100}}\) (km).

Tiếp tục như vậy, để chạy hết quãng đường từ An đến An + 1 với AnAn + 1 = \(\frac{1}{{{{100}^{n - 2}}}}\) (km), Achilles phải mất thời gian \({t_n} = \frac{1}{{{{100}^{n - 1}}}}\)(h). ...

b) Tổng thời gian cần thiết để Achilles chạy hết các quãng đường A1A2, A2A3, ..., A­nAn + 1, ..., tức là thời gian cần thiết để Achilles đuổi kịp rùa là

\(T = 1 + \frac{1}{{100}} + \frac{1}{{{{100}^2}}} + ... + \frac{1}{{{{100}^{n - 1}}}} + \frac{1}{{{{100}^n}}} + ...\) (h).

Đó là tổng của một cấp số nhân lùi vô hạn với u1 = 1, công bội \(q = \frac{1}{{100}}\), nên ta có

\(T = \frac{{{u_1}}}{{1 - q}} = \frac{1}{{1 - \frac{1}{{100}}}} = \frac{{100}}{{99}} = 1\frac{1}{{99}}\) (h).

Như vậy, Achilles đuổi kịp rùa sau \(1\frac{1}{{99}}\) giờ.

c) Nghịch lý Zeno chỉ đúng với điều kiện là tổng thời gian Achilles chạy hết các quãng đường để đuổi kịp rùa phải là vô hạn, còn nếu nó hữu hạn thì đó chính là khoảng thời gian mà anh bắt kịp được rùa.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày đầu tiên là 150 mg.

Sau ngày đầu, trước mỗi lần uống, hàm lượng thuốc cũ trong cơ thể vẫn còn 5%.

Do đó, lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ hai là

150 + 150 . 5% = 150(1 + 0,05).

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ ba là

150 + 150(1 + 0,05) . 5% = 150 + 150(0,05 + 0,052) = 150(1 + 0,05 + 0,052)

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ tư là

150 + 150(1 + 0,05 + 0,052) . 5% = 150(1 + 0,05 + 0,052 + 0,053)

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ năm là

150 + 150(1 + 0,05 + 0,052 + 0,053) . 5% = 150(1 + 0,05 + 0,052 + 0,053 + 0,054)

= 157,8946875 (mg).

Cứ tiếp tục như vậy, ta ước tính lượng thuốc trong cơ thể bệnh nhân nếu bệnh nhân sử dụng thuốc trong một thời gian dài là

S = 150(1 + 0,05 + 0,052 + 0,053 + 0,054 + ...) (mg)

Lại có 1 + 0,05 + 0,052 + 0,053 + 0,054 + ... là tổng của cấp số nhân lùi vô hạn với số hạng đầu u1 = 1 và công bội q = 0,05.

Do đó, 1 + 0,05 + 0,052 + 0,053 + 0,054 + ... = \(\frac{{{u_1}}}{{1 - q}} = \frac{1}{{1 - 0,05}} = \frac{{20}}{{19}}\).

Suy ra S = \(150 \cdot \frac{{20}}{{19}} = \frac{{400}}{{361}}\) (mg).

Lời giải

Lời giải:

a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}\left( {1 + \frac{1}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \frac{1}{{{n^2}}}} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{1 + \frac{1}{n} + \frac{1}{{{n^2}}}}}{{2 + \frac{1}{{{n^2}}}}} = \frac{1}{2}\).

b) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {{n^2} + 2n} \right) - {n^2}}}{{\sqrt {{n^2} + 2n} + n}}\)

\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{\sqrt {{n^2}\left( {1 + \frac{2}{n}} \right)} + n}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{n\sqrt {1 + \frac{2}{n}} + n}}\)

\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{n\left( {\sqrt {1 + \frac{2}{n}} + 1} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{2}{{\sqrt {1 + \frac{2}{n}} + 1}} = \frac{2}{{\sqrt 1 + 1}} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay