Câu hỏi:
12/07/2024 1,442Để đơn giản, ta giả sử Achilles chạy với vận tốc 100 km/h, vận tốc của rùa là 1 km/h và khoảng cách ban đầu là a = 100 (km).
a) Tính thời gian t1, t2, ..., tn, ... tương ứng để Achilles đi từ A1 đến A2, từ A2 đến A3, ... từ An đến An + 1, ...
b) Tính tổng thời gian cần thiết để Achilles chạy hết các quãng đường A1A2, A2A3, ..., AnAn + 1, ..., tức là thời gian cần thiết để Achilles đuổi kịp rùa.
c) Sai lầm trong lập luận của Zeno là ở đâu?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải:
Ta có: Achilles chạy với vận tốc 100 km/h, vận tốc của rùa là 1 km/h.
a) Để chạy hết quãng đường từ A1 đến A2 với A1A2 = a = 100 (km), Achilles phải mất thời gian \({t_1} = \frac{{100}}{{100}} = 1\)(h). Với thời gian t1 này, rùa đã chạy được quãng đường A2A3 = 1 (km).
Để chạy hết quãng đường từ A2 đến A3 với A2A3 = 1 (km), Achilles phải mất thời gian \({t_2} = \frac{1}{{100}}\)(h). Với thời gian t2 này, rùa đã chạy được quãng đường A3A4 = \(\frac{1}{{100}}\) (km).
Tiếp tục như vậy, để chạy hết quãng đường từ An đến An + 1 với AnAn + 1 = \(\frac{1}{{{{100}^{n - 2}}}}\) (km), Achilles phải mất thời gian \({t_n} = \frac{1}{{{{100}^{n - 1}}}}\)(h). ...
b) Tổng thời gian cần thiết để Achilles chạy hết các quãng đường A1A2, A2A3, ..., AnAn + 1, ..., tức là thời gian cần thiết để Achilles đuổi kịp rùa là
\(T = 1 + \frac{1}{{100}} + \frac{1}{{{{100}^2}}} + ... + \frac{1}{{{{100}^{n - 1}}}} + \frac{1}{{{{100}^n}}} + ...\) (h).
Đó là tổng của một cấp số nhân lùi vô hạn với u1 = 1, công bội \(q = \frac{1}{{100}}\), nên ta có
\(T = \frac{{{u_1}}}{{1 - q}} = \frac{1}{{1 - \frac{1}{{100}}}} = \frac{{100}}{{99}} = 1\frac{1}{{99}}\) (h).
Như vậy, Achilles đuổi kịp rùa sau \(1\frac{1}{{99}}\) giờ.
c) Nghịch lý Zeno chỉ đúng với điều kiện là tổng thời gian Achilles chạy hết các quãng đường để đuổi kịp rùa phải là vô hạn, còn nếu nó hữu hạn thì đó chính là khoảng thời gian mà anh bắt kịp được rùa.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hình vuông cạnh 1 (đơn vị độ dài). Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (H.5.2). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi u1, u2, ..., un, ... lần lượt là độ dài cạnh của các hình vuông được tô màu.
a) Tính tổng Sn = u1 + u2 + ... + un.
b) Tìm S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\).
Câu 3:
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}}\);
b) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right)\).
Câu 4:
Tìm giới hạn của các dãy số cho bởi:
a) \({u_n} = \frac{{{n^2} + 1}}{{2n - 1}}\);
b) \({v_n} = \sqrt {2{n^2} + 1} - n\).
Câu 5:
Câu 6:
Cho hai dãy số (un) và (vn) với \({u_n} = 2 + \frac{1}{n},\,\,{v_n} = 3 - \frac{2}{n}\).
Tính và so sánh: \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right)\) và \(\mathop {\lim }\limits_{n \to + \infty } {u_n} + \mathop {\lim }\limits_{n \to + \infty } {v_n}\).
Câu 7:
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
về câu hỏi!