Câu hỏi:
13/07/2024 1,455Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40° Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số \(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với t ∈ ℤ và 0 < t ≤ 365.
(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020)
Vào ngày nào trong năm thì thành phố A có đúng 9 giờ có ánh sáng mặt trời?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Để thành phố A có đúng 9 giờ có ánh sáng mặt trời thì:
\(3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 = 9\)
\( \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = - 1\)
\( \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = - \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow t - 80 = - 91 + 364k\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow t = - 11 + 364k\,\,\left( {k \in \mathbb{Z}} \right)\)
Do t ∈ ℤ và 0 < t ≤ 365 nên ta có:
\[\left\{ \begin{array}{l}k \in \mathbb{Z}\\0 < - 11 + 364k \le 365\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\11 < 364k \le 376\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\\frac{{11}}{{364}} < k \le \frac{{94}}{{91}}\end{array} \right. \Leftrightarrow k = 1\]
Với k = 1 thì t = ‒11 + 364.1 = 353.
Vậy thành phố A có đúng 9 giờ có ánh sáng mặt trời vào ngày thứ 353 trong năm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Hội Lim (tỉnh Bắc Ninh) được tổ chức vào mùa xuân thường có trò chơi đánh đu. Khi người chơi đu nhún đều, cây đu sẽ đưa người chơi đu dao động quanh vị trí cân bằng (Hình 38). Nghiên cứu trò chơi này, người ta thấy khoảng cách h(m) từ vị trí người chơi đu đến vị trí cân bằng được biểu diễn qua thời gian t (s) (với t ≥ 0) bởi hệ thức h = |d| với \(d = 3\cos \left[ {\frac{\pi }{3}\left( {2t - 1} \right)} \right]\), trong đó ta quy ước d > 0 khi vị trí cân bằng ở phía sau lưng người chơi đu và d < 0 trong trường hợp ngược lại (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020). Vào thời gian t nào thì khoảng cách h là 3 m, 0 m?
Câu 3:
Một vệ tinh nhân tạo bay quanh Trái Đất theo một quỹ đạo là đường elip (Hình 32). Độ cao h (km) của vệ tinh so với bề mặt Trái Đất được xác định bởi công thức \(h = 550 + 450\cos \frac{\pi }{{50}}t\) (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2021), trong đó t là thời gian tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo. Tại thời điểm t bằng bao nhiêu thì vệ tinh cách mặt đất 1 000 km; 250 km; 100 km?
Trên thực tế, có nhiều bài toán dẫn đến việc giải một trong các phương trình có dạng: sinx = m, cosx = m, tanx = m, cotx = m, trong đó x là ẩn số, m là số thực cho trước. Các phương trình đó là các phương trình lượng giác cơ bản.
Câu 4:
Giải phương trình:
\({\cos ^2}2x = {\cos ^2}\left( {x + \frac{\pi }{6}} \right)\).
Câu 7:
Giải phương trình:
\[\cot x - 3 = \sqrt 3 \left( {1 - \cot x} \right)\].
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận