Câu hỏi:
12/07/2024 1,332Giải phương trình:
\(\sin \left( {2x - \frac{\pi }{6}} \right) = - \frac{1}{2}\);
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Do \(\sin \left( { - \frac{\pi }{6}} \right) = - \frac{1}{2}\) nên \(\sin \left( {2x - \frac{\pi }{6}} \right) = - \frac{1}{2}\)\( \Leftrightarrow \sin \left( {2x - \frac{\pi }{6}} \right) = \sin \left( { - \frac{\pi }{6}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{6} = - \frac{\pi }{6} + k2\pi \\2x - \frac{\pi }{6} = \pi - \left( { - \frac{\pi }{6}} \right) + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}2x = k2\pi \\2x = \frac{{4\pi }}{3} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{{2\pi }}{3} + k\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình cos 2x = 0 có các nghiệm là:
A. \(x = \frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
B. \(x = \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
C. \(x = \frac{\pi }{4} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
D. \(x = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Câu 2:
Cho tan α = 2. Giá trị của biểu thức \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) bằng:
Câu 3:
Giải phương trình:
\({\cos ^2}\left( {\frac{x}{2} + \frac{\pi }{6}} \right) = {\cos ^2}\left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right)\);
Câu 4:
Giải phương trình:
\(\sin \left( {2x + \frac{\pi }{3}} \right) = \sin \left( {3x - \frac{\pi }{6}} \right)\);
Câu 6:
Giải phương trình:
\(\cos \left( {x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4} - 2x} \right)\);
về câu hỏi!