Câu hỏi:
18/07/2023 374Một chất điểm chuyển động đều theo chiều ngược chiều kim đồng hồ trên đường tròn bán kính 5 cm. Khoảng cách h (cm) từ chất điểm đến trục hoành được tính theo công thức h = |y|, trong đó \(y = a\sin \left( {\frac{\pi }{5}t} \right)\) với t là thời gian chuyển động của chất điểm tính bằng giây (t ≥ 0) và chất điểm bắt đầu chuyển động từ vị trí A (Hình 16).
Tìm thời điểm sao cho chất điểm ở vị trí có h = 2,5 cm và nằm phía dưới trục hoành trong một vòng quay đầu tiên.
Quảng cáo
Trả lời:
Từ kết quả câu b, ta có: \(y = 5\sin \left( {\frac{\pi }{5}t} \right)\).
Do h = 2,5 cm và chất điểm nằm ở dưới trục hoành nên y = – 2,5.
Với y = – 2,5, ta có: \(5\sin \left( {\frac{\pi }{5}t} \right) = - 2,5\)
\( \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = - \frac{1}{2}\)
\( \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = \sin \left( { - \frac{\pi }{6}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{5}t = - \frac{\pi }{6} + k2\pi \\\frac{\pi }{5}t = \pi - \left( { - \frac{\pi }{6}} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}t = \frac{{ - 5 + 60k}}{6}\\t = \frac{{35 + 60k}}{6}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)
Với vòng quay đầu tiên thì 0 ≤ t ≤ 10, do đó \(t = \frac{{35}}{6},\,\,t = \frac{{55}}{6}\).
Vậy tại thời điểm \(t = \frac{{35}}{6}\) giây, \(t = \frac{{55}}{6}\) giây thì chất điểm ở vị trí có h = 2,5 cm và nằm ở dưới trục hoành trong một vòng quay đầu tiên.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 211
Đã bán 104
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình cos 2x = 0 có các nghiệm là:
A. \(x = \frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
B. \(x = \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
C. \(x = \frac{\pi }{4} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
D. \(x = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Câu 2:
Cho tan α = 2. Giá trị của biểu thức \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) bằng:
Câu 3:
Giải phương trình:
\({\cos ^2}\left( {\frac{x}{2} + \frac{\pi }{6}} \right) = {\cos ^2}\left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right)\);
Câu 5:
Giải phương trình:
\(\sin \left( {2x + \frac{\pi }{3}} \right) = \sin \left( {3x - \frac{\pi }{6}} \right)\);
Câu 7:
Giải phương trình:
\(\cos \left( {x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4} - 2x} \right)\);
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận