Câu hỏi:
18/07/2023 366Một chất điểm chuyển động đều theo chiều ngược chiều kim đồng hồ trên đường tròn bán kính 5 cm. Khoảng cách h (cm) từ chất điểm đến trục hoành được tính theo công thức h = |y|, trong đó \(y = a\sin \left( {\frac{\pi }{5}t} \right)\) với t là thời gian chuyển động của chất điểm tính bằng giây (t ≥ 0) và chất điểm bắt đầu chuyển động từ vị trí A (Hình 16).
Tìm thời điểm sao cho chất điểm ở vị trí có h = 2,5 cm và nằm phía dưới trục hoành trong một vòng quay đầu tiên.
Quảng cáo
Trả lời:
Từ kết quả câu b, ta có: \(y = 5\sin \left( {\frac{\pi }{5}t} \right)\).
Do h = 2,5 cm và chất điểm nằm ở dưới trục hoành nên y = – 2,5.
Với y = – 2,5, ta có: \(5\sin \left( {\frac{\pi }{5}t} \right) = - 2,5\)
\( \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = - \frac{1}{2}\)
\( \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = \sin \left( { - \frac{\pi }{6}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{5}t = - \frac{\pi }{6} + k2\pi \\\frac{\pi }{5}t = \pi - \left( { - \frac{\pi }{6}} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}t = \frac{{ - 5 + 60k}}{6}\\t = \frac{{35 + 60k}}{6}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)
Với vòng quay đầu tiên thì 0 ≤ t ≤ 10, do đó \(t = \frac{{35}}{6},\,\,t = \frac{{55}}{6}\).
Vậy tại thời điểm \(t = \frac{{35}}{6}\) giây, \(t = \frac{{55}}{6}\) giây thì chất điểm ở vị trí có h = 2,5 cm và nằm ở dưới trục hoành trong một vòng quay đầu tiên.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình cos 2x = 0 có các nghiệm là:
A. \(x = \frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
B. \(x = \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
C. \(x = \frac{\pi }{4} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
D. \(x = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Câu 2:
Cho tan α = 2. Giá trị của biểu thức \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) bằng:
Câu 3:
Giải phương trình:
\({\cos ^2}\left( {\frac{x}{2} + \frac{\pi }{6}} \right) = {\cos ^2}\left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right)\);
Câu 4:
Giải phương trình:
\(\sin \left( {2x + \frac{\pi }{3}} \right) = \sin \left( {3x - \frac{\pi }{6}} \right)\);
Câu 7:
Giải phương trình:
\(\cos \left( {x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4} - 2x} \right)\);
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận