Câu hỏi:
18/07/2023 171Từ độ cao 100 m, người ta thả một quả bóng cao su xuống đất. Giả sử cứ sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng \(\frac{1}{4}\) độ cao mà quả bóng đạt được trước đó. Gọi hn là độ cao quả bóng đạt được ở lần nảy thứ n.
Tính giới hạn của dãy số (hn) và nêu ý nghĩa giới hạn của dãy số (hn).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: limhn = \(\lim \frac{{100}}{{{4^n}}} = \lim \left( {100.\frac{1}{{{4^n}}}} \right) = \lim 100.\lim {\left( {\frac{1}{4}} \right)^n} = 100.0 = 0\).
Từ giới hạn đó, ta rút ra được ý nghĩa: Khi n càng dần tới vô cực thì độ cao của quả bóng đạt được sau khi nảy ngày càng nhỏ và độ cao đó dần tới 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính các giới hạn sau:
\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}}\);
Câu 2:
Phát biểu nào sau đây là sai?
A. \(\lim \frac{1}{{{2^n}}} = 0\).
B. \(\lim {\left( {\frac{3}{2}} \right)^n} = 0\).
C. \(\lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}} = 0\).
D. \(\lim {\left( { - \frac{{\sqrt 3 }}{2}} \right)^n} = 0\).
Câu 3:
Câu 4:
Cho limun = a, lim vn = b. Phát biểu nào sau đây là sai?
A. lim(un + vn) = a + b.
B. lim(un – vn) = a – b.
C. lim(un . vn) = a . b.
D. \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{a - b}}{b}\).
Câu 5:
Tính các giới hạn sau:
\(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}}\);
Câu 6:
Phát biểu nào sau đây là đúng?
A. Nếu limun = a thì \(\lim \sqrt {{u_n}} = \sqrt a \).
B. Nếu limun = a thì a ≥ 0 và \(\lim \sqrt {{u_n}} = \sqrt a \).
C. Nếu limun = a thì a ≥ 0.
D. Nếu un ≥ 0 với mọi n và limun = a thì a ≥ 0 và \(\lim \sqrt {{u_n}} = \sqrt a \).
về câu hỏi!