Câu hỏi:

13/07/2024 1,681

Từ độ cao 100 m, người ta thả một quả bóng cao su xuống đất. Giả sử cứ sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng \(\frac{1}{4}\) độ cao mà quả bóng đạt được trước đó. Gọi h­n là độ cao quả bóng đạt được ở lần nảy thứ n.

Gọi Sn là tổng độ dài quãng đường đi được của quả bóng từ lúc bắt đầu thả quả bóng đến khi quả bóng chạm đất lần thứ n. Tính Sn, nếu quá trình này cứ tiếp tục diễn ra mãi thì tổng quãng đường quả bóng di chuyển được là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \({S_n} = 100 + 2\left( {\frac{{100}}{4} + \frac{{100}}{{{4^2}}} + \frac{{100}}{{{4^3}}} + ... + \frac{{100}}{{{4^n}}}} \right)\).

Nếu quá trình bóng nảy cứ tiếp tục diễn ra mãi, tổng quãng đường quả bóng di chuyển được là: \(\lim {S_n} = 100 + 2\left( {\frac{{100}}{4} + \frac{{100}}{{{4^2}}} + \frac{{100}}{{{4^3}}} + ... + \frac{{100}}{{{4^n}}} + ...} \right)\).

\(\frac{{100}}{4};\,\frac{{100}}{{{4^2}}};\,\frac{{100}}{{{4^3}}};...;\frac{{100}}{{{4^n}}};...\) lập thành một cấp số nhân lùi vô hạn với \({u_1} = \frac{{100}}{4}\) và công bội \(q = \frac{1}{4} < 1\) nên ta có \(\lim {S_n} = 100 + 2.\frac{{\frac{{100}}{4}}}{{1 - \frac{1}{4}}} = \frac{{500}}{3}\).

Vậy tổng quãng đường quả bóng di chuyển được là \(\frac{{500}}{3}\) m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}}\)\( = \lim \frac{{{n^3}\left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right)}}\)\( = \lim \frac{{1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}}}\)

\( = \frac{{\lim \left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{\lim \left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right)}} = + \infty \) (do \(\lim \left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right) = 1\)\(\lim \left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right) = 0\)).

Lời giải

Đáp án đúng là: B

Vì limqn = 0 với |q| < 1 nên ta có:

\(\lim \frac{1}{{{2^n}}} = \lim {\left( {\frac{1}{2}} \right)^n} = 0\) do \(\left| {\frac{1}{2}} \right| < 1\);

\(\lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}} = \lim {\left( {\frac{1}{{\sqrt 2 }}} \right)^n} = 0\) do \(\left| {\frac{1}{{\sqrt 2 }}} \right| < 1\);

\(\lim {\left( { - \frac{{\sqrt 3 }}{2}} \right)^n} = 0\) do \(\left| { - \frac{{\sqrt 3 }}{2}} \right| < 1\).

Vậy các đáp án A, C, D đúng.

\(\left| {\frac{3}{2}} \right| > 1\) nên \(\lim {\left( {\frac{3}{2}} \right)^n} \ne 0\), do đó đáp án B sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay