Câu hỏi:

13/07/2024 1,598

Từ độ cao 100 m, người ta thả một quả bóng cao su xuống đất. Giả sử cứ sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng \(\frac{1}{4}\) độ cao mà quả bóng đạt được trước đó. Gọi h­n là độ cao quả bóng đạt được ở lần nảy thứ n.

Gọi Sn là tổng độ dài quãng đường đi được của quả bóng từ lúc bắt đầu thả quả bóng đến khi quả bóng chạm đất lần thứ n. Tính Sn, nếu quá trình này cứ tiếp tục diễn ra mãi thì tổng quãng đường quả bóng di chuyển được là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \({S_n} = 100 + 2\left( {\frac{{100}}{4} + \frac{{100}}{{{4^2}}} + \frac{{100}}{{{4^3}}} + ... + \frac{{100}}{{{4^n}}}} \right)\).

Nếu quá trình bóng nảy cứ tiếp tục diễn ra mãi, tổng quãng đường quả bóng di chuyển được là: \(\lim {S_n} = 100 + 2\left( {\frac{{100}}{4} + \frac{{100}}{{{4^2}}} + \frac{{100}}{{{4^3}}} + ... + \frac{{100}}{{{4^n}}} + ...} \right)\).

\(\frac{{100}}{4};\,\frac{{100}}{{{4^2}}};\,\frac{{100}}{{{4^3}}};...;\frac{{100}}{{{4^n}}};...\) lập thành một cấp số nhân lùi vô hạn với \({u_1} = \frac{{100}}{4}\) và công bội \(q = \frac{1}{4} < 1\) nên ta có \(\lim {S_n} = 100 + 2.\frac{{\frac{{100}}{4}}}{{1 - \frac{1}{4}}} = \frac{{500}}{3}\).

Vậy tổng quãng đường quả bóng di chuyển được là \(\frac{{500}}{3}\) m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính các giới hạn sau:

\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}}\);

Xem đáp án » 13/07/2024 10,257

Câu 2:

Phát biểu nào sau đây là sai?

A. \(\lim \frac{1}{{{2^n}}} = 0\).

B. \(\lim {\left( {\frac{3}{2}} \right)^n} = 0\).

C. \(\lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}} = 0\).

D. \(\lim {\left( { - \frac{{\sqrt 3 }}{2}} \right)^n} = 0\).

Xem đáp án » 13/07/2024 5,049

Câu 3:

Biểu diễn số thập phân vô hạn tuần hoàn 2,(3) dưới dạng phân số

Xem đáp án » 12/07/2024 3,024

Câu 4:

Cho limun = a, lim vn = b. Phát biểu nào sau đây là sai?

A. lim(un + vn) = a + b.

B. lim(un – vn) = a – b.

C. lim(un . vn) = a . b.

D. \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{a - b}}{b}\).

Xem đáp án » 18/07/2023 2,549

Câu 5:

Cho hai dãy số (un), (vn) với \({u_n} = 3 - \frac{4}{{n + 1}}\), \({v_n} = 8 - \frac{5}{{3{n^2} + 2}}\). Tính:

lim(un + vn), lim(un – vn), lim(un . vn), \(\lim \frac{{{u_n}}}{{{v_n}}}\).

Xem đáp án » 12/07/2024 2,016

Câu 6:

Tính các giới hạn sau:

\(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}}\);

Xem đáp án » 13/07/2024 1,781

Câu 7:

Tính các giới hạn sau:

\(\lim \frac{{4n + 2}}{3}\);

Xem đáp án » 12/07/2024 1,695
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay