Câu hỏi:

13/07/2024 1,032

 

\(\lim \frac{{\sqrt {9{n^2} + 2n + 1} }}{{n - 5}}\);      

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\lim \frac{{\sqrt {9{n^2} + 2n + 1} }}{{n - 5}}\)\( = \lim \frac{{\sqrt {{n^2}\left( {9 + \frac{2}{n} + \frac{1}{{{n^2}}}} \right)} }}{{n - 5}}\)\( = \lim \frac{{n\sqrt {9 + \frac{2}{n} + \frac{1}{{{n^2}}}} }}{{n\left( {1 - \frac{5}{n}} \right)}}\)

\( = \lim \frac{{\sqrt {9 + \frac{2}{n} + \frac{1}{{{n^2}}}} }}{{1 - \frac{5}{n}}} = \frac{{\lim \sqrt {9 + \frac{2}{n} + \frac{1}{{{n^2}}}} }}{{\lim \left( {1 - \frac{5}{n}} \right)}} = \frac{{\sqrt 9 }}{1} = 3\). 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 5x + 6}}{{x - 2}}\)\[ = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x - 3} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x - 3} \right) = - 1\].                  

Lời giải

Với x ≠ 2 thì \(f\left( x \right) = \frac{{{x^2} - 4}}{{x - 2}}\) liên tục trên hai khoảng (–∞; 2) và (2; +∞).

Ta có: f(2) = a; \[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 2} \right) = 4\].

Để hàm số liên tục trên ℝ thì hàm số phải liên tục tại x = 2.

Khi đó \[f\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} f\left( x \right)\] hay a = 4.

Vậy hàm số liên tục trên ℝ khi a = 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP