Câu hỏi:
13/07/2024 509Cho hình bình hành ABCD. Trên cạnh AD, BC lần lượt lấy điểm E, F sao cho AE = CF. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho BM = DN. Chứng minh:
Tứ giác ENFM là hình bình hành;
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do ABCD là hình bình hành nên AD = BC và AB = CD; \(\widehat A = \widehat C\) và \(\widehat {ABC} = \widehat {CDA}\).
Mà AE = CF, AE + ED = AD, BF + CF = BC
Suy ra DE = BF.
Tương tự, ta cũng có AM = CN.
Xét ∆AEM và ∆CFN có:
AM = CN, \(\widehat A = \widehat C\), AE = CF
Do đó ∆AEM và ∆CFN (c.g.c). Suy ra EM = FN (hai cạnh tương ứng)
Xét ∆BFM và ∆DEN có:
BF = DE, \(\widehat {ABC} = \widehat {CDA}\), BM = DN
Do đó ∆BFM = ∆DEN (c.g.c). Suy ra FM = EN.
Tứ giác EMFN có EM = FN và FM = EN nên EMFN là hình bình hành.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có các đường trung tuyến BD và CE. Lấy các điểm H, K sao cho E là trung điểm của CH, D là trung điểm của BK. Chứng minh:
A là trung điểm của HK.
Câu 2:
Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).
Câu 3:
Cho tam giác ABC có AB = AC = 3 cm. Từ điểm M thuộc cạnh BC, kẻ MD song song với AC và ME song song với AB (điểm D, E lần lượt thuộc cạnh AB, AC). Tính chu vi của tứ giác ADME.
Câu 4:
Cho hình bình hành ABCD. Trên cạnh AD, BC lần lượt lấy điểm E, F sao cho AE = CF. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho BM = DN. Chứng minh:
Bốn đường thẳng AC, BD, EF, MN cùng đi qua một điểm.
Câu 5:
Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).
Tam giác ABC có điều kiện gì thì ba điểm A, D, H thẳng hàng?
Câu 6:
Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).
Giả sử H là trung điểm của AM. Chứng minh diện tích của tam giác ABC bằng diện tích của tứ giác BHCD.
Câu 7:
Cho hình bình hành ABCD có \(\widehat A > 90^\circ \), AB > BC. Trên đường thẳng vuông góc với BC tại C lấy hai điểm E, F sao cho CE = CF = BC. Trên đường thẳng vuông góc với CD tại C lấy hai điểm P, Q sao cho CP = CQ = CD (Hình 16). Chứng minh:
AC ⊥ EP.
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bài tập Nhân đơn thức với đa thức (có lời giải chi tiết)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
về câu hỏi!