Câu hỏi:
13/07/2024 596
Cho hình bình hành ABCD. Trên cạnh AD, BC lần lượt lấy điểm E, F sao cho AE = CF. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho BM = DN. Chứng minh:
Tứ giác ENFM là hình bình hành;
Cho hình bình hành ABCD. Trên cạnh AD, BC lần lượt lấy điểm E, F sao cho AE = CF. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho BM = DN. Chứng minh:
Tứ giác ENFM là hình bình hành;
Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Hình bình hành có đáp án !!
Quảng cáo
Trả lời:

Do ABCD là hình bình hành nên AD = BC và AB = CD; \(\widehat A = \widehat C\) và \(\widehat {ABC} = \widehat {CDA}\).
Mà AE = CF, AE + ED = AD, BF + CF = BC
Suy ra DE = BF.
Tương tự, ta cũng có AM = CN.
Xét ∆AEM và ∆CFN có:
AM = CN, \(\widehat A = \widehat C\), AE = CF
Do đó ∆AEM và ∆CFN (c.g.c). Suy ra EM = FN (hai cạnh tương ứng)
Xét ∆BFM và ∆DEN có:
BF = DE, \(\widehat {ABC} = \widehat {CDA}\), BM = DN
Do đó ∆BFM = ∆DEN (c.g.c). Suy ra FM = EN.
Tứ giác EMFN có EM = FN và FM = EN nên EMFN là hình bình hành.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do AM, BN, CP là đường cao của ∆ABC nên AM ⊥ BC, BN ⊥ AC, CP ⊥ AB
Do CP ⊥ AB, BD ⊥ AB nên CP // BD.
Do BN ⊥ AC, CD ⊥ AC nên BN // CD
Tứ giác BDCH có BD // CH, BH // CD nên BDCH là hình bình hành.
Lời giải

Do AHBC là hình bình hành nên AH // BC, AH = BC.
Tương tự, AKCB là hình bình hành nên AK // BC, AK = BC.
Suy ra ba điểm H, A, K thẳng hàng và AH = AK.
Vậy A là trung điểm của HK.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.