Cho hình bình hành ABCD có \(\widehat A > 90^\circ \), AB > BC. Trên đường thẳng vuông góc với BC tại C lấy hai điểm E, F sao cho CE = CF = BC. Trên đường thẳng vuông góc với CD tại C lấy hai điểm P, Q sao cho CP = CQ = CD (Hình 16). Chứng minh:
Tứ giác EPFQ là hình bình hành
Cho hình bình hành ABCD có \(\widehat A > 90^\circ \), AB > BC. Trên đường thẳng vuông góc với BC tại C lấy hai điểm E, F sao cho CE = CF = BC. Trên đường thẳng vuông góc với CD tại C lấy hai điểm P, Q sao cho CP = CQ = CD (Hình 16). Chứng minh:
Tứ giác EPFQ là hình bình hành

Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Hình bình hành có đáp án !!
Quảng cáo
Trả lời:
Do CE = CF nên C là trung điểm của EF;
CP = CQ nên C là trung điểm PQ.
Tứ giác EPFQ có hai đường chéo EF và PQ cắt nhau tại trung điểm C của mỗi đường nên là hình bình hành.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Do AHBC là hình bình hành nên AH // BC, AH = BC.
Tương tự, AKCB là hình bình hành nên AK // BC, AK = BC.
Suy ra ba điểm H, A, K thẳng hàng và AH = AK.
Vậy A là trung điểm của HK.
Lời giải
Tứ giác ADME có MD // AE, ME // AD nên ADME là hình bình hành.
Suy ra AD = ME và AE = DM.
Do đó chu vi hình bình hành ADME là:
AD + DM + ME + EA = 2(AE + ME).
Do AB = AC nên tam giác ABC cân tại A. Suy ra \(\widehat {ABC} = \widehat {ACB}\).
Mà \(\widehat {ABC} = \widehat {EMC}\) (hai góc đồng vị do ME // AB), suy ra \(\widehat {ACB} = \widehat {EMC}\).
Do đó, tam giác ECM cân tại E. Suy ra ME = CE.
Vậy chu vi của hình bình hành ADME là:
2(AE + ME) = 2(AE + CE) = 2AC = 6 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


