Câu hỏi:

13/07/2024 2,428 Lưu

Cho hình vuông ABCD có độ dài cạnh bằng 8 cm. Độ dài đường chéo AC là:

A. \(4\sqrt 2 {\rm{\;cm}}\).

B. \(8\sqrt 2 {\rm{\;cm}}\).

C. \(2\sqrt 8 {\rm{\;cm}}\).

D. \(4\sqrt 8 {\rm{\;cm}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình vuông ABCD có độ dài cạnh bằng 8 cm. Độ dài đường chéo AC là (ảnh 1)

Do ABCD là hình vuông nên AB = BC = 8 cm, \(\widehat {ABC} = 90^\circ \)

Áp dụng định lý Pythagore trong tam giác vuông ABC tại B ta có:

AC2 = AB2 + BC2 = 82 + 82 = 128

Suy ra \[AC = \sqrt {128} = \sqrt {{{\left( {8\sqrt 2 } \right)}^2}} = 8\sqrt 2 \;\;\left( {{\rm{cm}}} \right)\].  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình bình hành ABCD có góc A = 3 góc B. Số đo các góc của hình bình hành (ảnh 1)

Do ABCD là hình bình hành nên \(\widehat A = \widehat C\), \(\widehat B = \widehat D\), \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \)

\(\widehat A = 3\widehat B\) nên \(\widehat A = \widehat C = 3\widehat B\)

Suy ra \(3\widehat B + \widehat B + 3\widehat B + \widehat B = 360^\circ \)

Do đó \(8\widehat B = 360^\circ \) nên \(\widehat B = 45^\circ \)

Vậy \(\widehat B = \widehat D = 45^\circ \), \(\widehat A = \widehat C = 3\widehat B = 3.45^\circ = 135^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP