Câu hỏi:

13/07/2024 1,649

Cho hình vuông ABCD. Lấy điểm M thuộc đường chéo BD. Kẻ ME vuông góc với AB tại E, MF vuông góc với AD tại F.

Xác định vị trí của điểm M trên đường chéo BD để diện tích của tứ giác AEMF lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Xác định vị trí của điểm M trên đường chéo BD để diện tích của tứ giác AEMF lớn nhất. (ảnh 1)

Gọi H là giao điểm của DE và CF, K là giao điểm của CM và EF.

Do ABCD là hình vuông nên ta có: \(\widehat {DAB} = 90^\circ ,CD = DA,\widehat {ADB} = \widehat {ABD} = \widehat {DBC} = 45^\circ \)

Chu vi của hình chữ nhật AEMF là: 2(AE + AF) = 2(DF + AF) = 2AD.

AD không đồi nên chu vi của hình chữ nhật AEMF không đồi.

Do đó, diện tích của tứ giác AEMF lớn nhất khi AEMF là hình vuông. Suy ra ME = MF.

Khi đó ∆BEM = ∆DFM (cạnh góc vuông – góc nhọn kề).

Suy ra BM = DM hay M là trung điểm của BC.

Vậy với M là trung điểm của BC thì diện tích của tứ giác AEMF lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình bình hành ABCD có góc A = 3 góc B. Số đo các góc của hình bình hành (ảnh 1)

Do ABCD là hình bình hành nên \(\widehat A = \widehat C\), \(\widehat B = \widehat D\), \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \)

\(\widehat A = 3\widehat B\) nên \(\widehat A = \widehat C = 3\widehat B\)

Suy ra \(3\widehat B + \widehat B + 3\widehat B + \widehat B = 360^\circ \)

Do đó \(8\widehat B = 360^\circ \) nên \(\widehat B = 45^\circ \)

Vậy \(\widehat B = \widehat D = 45^\circ \), \(\widehat A = \widehat C = 3\widehat B = 3.45^\circ = 135^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP