Câu hỏi:

13/07/2024 1,483

Cho tứ giác ABCD có E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Điều kiện của tứ giác ABCD để tứ giác EFGH là hình chữ nhật là:

A. BD = AC.

B. AB BC.

C. BD AC.

D. AB = CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho tứ giác ABCD có E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Điều kiện  (ảnh 1)

• Gọi I là điểm nằm trên tia đối của tia FE sao cho F là trung điểm của EI.

Tứ giác EBIC có F là trung điểm của BC và EI nên EBIC là hình bình hành

Suy ra BE // CI và BE = CI.

Mà E là trung điểm của AB nên AE = BE, do đó AE = CI

Khi đó tứ giác AEIC có AE // CI và AE = CI nên là hình bình hành

Suy ra EI // AC hay EF // AC.

• Chứng minh tương tự ta cũng có HG // AC, HE // BD, GF // BD

Từ đó ta có được EF // HG và HE // GF

Suy ra tứ giác EFGH là hình bình hành.

• Để hình bình hành EFGH là hình chữ nhật thì \(\widehat {HEF} = 90^\circ \) hay HE EF

Điều này có nghĩa AC BD.

Dễ thấy tứ giác ABCD có AC BD thì tứ giác EFGH là hình chữ nhật.

Vậy ta chọn phương án C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình bình hành ABCD có góc A = 3 góc B. Số đo các góc của hình bình hành (ảnh 1)

Do ABCD là hình bình hành nên \(\widehat A = \widehat C\), \(\widehat B = \widehat D\), \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \)

\(\widehat A = 3\widehat B\) nên \(\widehat A = \widehat C = 3\widehat B\)

Suy ra \(3\widehat B + \widehat B + 3\widehat B + \widehat B = 360^\circ \)

Do đó \(8\widehat B = 360^\circ \) nên \(\widehat B = 45^\circ \)

Vậy \(\widehat B = \widehat D = 45^\circ \), \(\widehat A = \widehat C = 3\widehat B = 3.45^\circ = 135^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay