Câu hỏi:
13/07/2024 3,767Cho hình vuông ABCD. Lấy điểm M thuộc đường chéo BD. Kẻ ME vuông góc với AB tại E, MF vuông góc với AD tại F.
Chứng minh ba đường thẳng DE, BF, CM cùng đi qua một điểm.
Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Bài tập cuối chương 5 có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Gọi H là giao điểm của DE và CF, K là giao điểm của CM và EF.
Do ABCD là hình vuông nên ta có: ^DAB=90∘,CD=DA,^ADB=^ABD=^DBC=45∘
Tương tự câu a, ta chứng minh được BF ⊥ CE.
Xét ∆ABM và ∆CBM có:
AB = BC, ^ABM=^CBM(=45∘), cạnh BM chung
Do đó ∆ABM = ∆CBM (c.g.c)
Suy ra AM = CM (hai cạnh tương ứng)
Mà EF = AM (vì AEMF là hình chữ nhật), suy ra EF = CM.
Xét ∆DEF và ∆FCM có:
DE = FC, EF = CM, DF = FM
Do đó ∆DEF = ∆FCM (c.c.c)
Suy ra ^DEF=^FCM (hai góc tương ứng)
Hay ^FEH=^FCK.
Trong tam giác HEF vuông tại H, ta có ^FEH+^EFH=90∘.
Suy ra ^FCK+^EFH=90∘ hay ^FCK+^KFC=90∘.
Do đó ^CKF=90∘. Do đó CK ⊥ EF.
Trong tam giác CEF, ta có: EH ⊥ CF, FB ⊥ CE, CM ⊥ EF nên ba đường thẳng EH, FB, CM là các đường cao của tam giác CEF.
Hay ba đường thẳng DE, BF, CM là các đường cao của tam giác CEF.
Vậy ba đường thẳng DE, BF, CM cùng đi qua một điểm.
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một công ty dự định làm một đường ống dẫn từ một nhà máy ở địa điểm C trên bờ đến một địa điểm B trên biển. Khoảng cách giữa địa điểm A trên đảo với địa điểm B, địa điểm C lần lượt là 9 km, 15 km; AB vuông góc với BC (minh hoạ ở Hình 27).
Giá làm 1 km đường ống là 5 000 đô la Mỹ. Hỏi chi phí làm đường ống từ địa điểm C đến địa điểm B là bao nhiêu đồng? Biết 1 đô la Mỹ bằng 23 635 đồng (ngày 01/01/2023 theo nguồn https://www.google.com/finance/quote).
Câu 2:
Cho hình bình hành ABCD có ˆA=3ˆB. Số đo các góc của hình bình hành ABCD là:
A. ˆA=ˆC=120∘,ˆC=ˆD=60∘.
B. ˆA=ˆD=45∘,ˆB=ˆC=135∘.
C. ˆA=ˆC=135∘,ˆB=ˆD=45∘.
D. ˆA=ˆD=135∘,ˆB=ˆC=45∘.
Câu 3:
Cho hình vuông ABCD có độ dài cạnh bằng 8 cm. Độ dài đường chéo AC là:
A. 4√2cm.
B. 8√2cm.
C. 2√8cm.
D. 4√8cm.
Câu 4:
Cho hình bình hành ABCD có BC = 2AB. Gọi M, N lần lượt là trung điểm của BC, AD.
Tìm điều kiện của hình bình hành ABCD để tứ giác PMQN là hình vuông.
Câu 5:
Cho hình bình hành ABCD có BC = 2AB. Gọi M, N lần lượt là trung điểm của BC, AD.
Gọi P là giao điểm của AM và BN, Q là giao điểm của CN và DM. Chứng minh tứ giác PMQN là hình chữ nhật.
Câu 6:
Cho hình vuông ABCD. Lấy điểm M thuộc đường chéo BD. Kẻ ME vuông góc với AB tại E, MF vuông góc với AD tại F.
Xác định vị trí của điểm M trên đường chéo BD để diện tích của tứ giác AEMF lớn nhất.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận