Câu hỏi:

12/07/2024 2,519

Cho tam giác ABC, trung tuyến AI. Tia phân giác góc AIB và tia phân giác góc AIC cắt AB, AC lần lượt tại M và N. Chứng minh MN // BC.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC, trung tuyến AI. Tia phân giác góc AIB và tia phân giác góc AIC cắt AB, AC lần lượt tại M và N. Chứng minh MN // BC.  (ảnh 1)

Trong ∆AIB, IM là phân giác của AIB^ nên MAMB=IAIB (tính chất đường phân giác của tam giác) (1)

Trong DAIC, IN là phân giác của AIC^ nên NANC=IAIC (tính chất đường phân giác của tam giác) (2)

AI là đường trung tuyến của ∆ABC nên I là trung điểm của BC, do đó IB = IC (3)

Từ (1), (2), (3) ta có: MAMB=NANC 

Suy ra MN // BC (định lí Thales đảo).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, phân giác AD (D BC). Kẻ DE // AB (E AC). Chứng minh rằng: AB.EC = AC.EA.

Xem đáp án » 12/07/2024 2,345

Câu 2:

Cho ∆ABC có AD, BE, CF lần lượt là đường phân giác của góc A, góc B, góc C (D BC, E AC, F AB). Chứng minh rằng:AEECCDDBBFFA=1.

Xem đáp án » 12/07/2024 1,453

Câu 3:

Tìm độ dài x trong Hình 5.12.

Tìm độ dài x trong Hình 5.12. (ảnh 1)

Xem đáp án » 12/07/2024 364

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store