Chứng minh rằng trong một tứ giác, tổng độ dài hai đường chéo lớn hơn nửa chu vi của tứ giác đó.
Chứng minh rằng trong một tứ giác, tổng độ dài hai đường chéo lớn hơn nửa chu vi của tứ giác đó.
Câu hỏi trong đề: Giải SBT Toán 8 CTST Bài 2. Tứ giác có đáp án !!
Quảng cáo
Trả lời:

Vẽ tứ giác ABCD. Gọi I là giao điểm của hai đường chéo AC và BD.
Theo bất đẳng thức tam giác, ta có:
IA + IB > AB (trong tam giác IAB)
IB + IC > BC (trong tam giác IBC)
IC + ID > CD (trong tam giác ICD)
IA + ID > AD (trong tam giác IAD)
Suy ra 2(IA + IB + IC + ID) > AB + BC + CD + DA
Hay 2(AC + BD) > AB + BC + CD + DA
Vậy hay tổng độ dài hai đường chéo của một tứ giác lớn hơn nửa chu vi của tứ giác đó.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có:
AB = AD (giả thiết), suy ra A thuộc đường trung trực của BD;
CB = CD (giả thiết), suy ra C thuộc đường trung trực của BD.
Vậy AC là đường trung trực của BD.
b) Xét ∆ABC và ∆ADC, ta có:
AB = AD (giả thiết); BC = DC (giả thiết); AC là cạnh chung.
Suy ra ∆ABC = ∆ADC (c.c.c).
Do đó (hai góc tương ứng)
Xét tứ giác ABCD, ta có
Hay
Do đó
Mà (chứng minh trên) nên
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.