Câu hỏi:
13/07/2024 10,340
Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. Chứng minh tứ giác MNBC là hình thang cân.
Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. Chứng minh tứ giác MNBC là hình thang cân.
Câu hỏi trong đề: Giải SBT Toán 8 CTST Bài 3. Hình thang cân có đáp án !!
Quảng cáo
Trả lời:

Xét ∆AMN có AM = AN (giả thiết).
Do đó ∆AMN cân tại A, suy ra
Vì ∆ABC cân tại A nên
Lại có (hai góc đối đỉnh) nên
Mà hai góc này ở vị trí so le trong nên MN // BC.
Vậy tứ giác MNBC là hình thang. (1)
Mặt khác, AB = AC; AM = AN.
Suy ra AB + AM = AC + AN, do đó MB = NC (2)
Từ (1) và (2) suy ra MNBC là hình thang cân.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Do BE, CD là hai đường cao nên BE ⊥ AC, CD ⊥ AB.
Xét ∆BEC vuông tại E và ∆CDB vuông tại D, ta có:
BC là cạnh chung; (do ∆ABC cân tại A)
Do đó ∆BEC = ∆CDB (cạnh huyền – góc nhọn)
Suy ra EC = BD (hai cạnh tương ứng)
Mà AC = AB nên AC ‒ EC = AB ‒ BD, hay AE = AD
Do đó ∆ADE cân tại A suy ra (1)
Vì ∆ABC cân tại A nên (2)
Từ (1) và (2) suy ra
Mà hai góc này ở vị trí đồng vị nên DE // BC
Suy ra tứ giác BDEC là hình thang.
Hình thang BDEC có nên là hình thang cân.
Lời giải

Tứ giác ABCD có tổng 4 góc bằng 360° nên
Mà
Do đó hay .
Suy ra AB // CD.
Vậy tứ giác ABCD là hình thang.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.