Câu hỏi:

13/07/2024 9,798

Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. Chứng minh tứ giác MNBC là hình thang cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. Chứng minh tứ giác MNBC là hình thang cân. (ảnh 1)

Xét ∆AMN có AM = AN (giả thiết).

Do đó ∆AMN cân tại A, suy ra M1^=180°A2^2.

Vì ∆ABC cân tại A nên B1^=180°A1^2.

Lại có A1^=A2^ (hai góc đối đỉnh) nên B1^=M1^.

Mà hai góc này ở vị trí so le trong nên MN // BC.

Vậy tứ giác MNBC là hình thang.  (1)

Mặt khác, AB = AC; AM = AN.

Suy ra AB + AM = AC + AN, do đó MB = NC  (2)

Từ (1) và (2) suy ra MNBC là hình thang cân.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A, có hai đường cao là BE CD (D AB, E AC). Chứng minh tứ giác BDEC là hình thang cân.

Xem đáp án » 13/07/2024 8,306

Câu 2:

Tứ giác ABCD có A^+D^=B^+C^. Chứng minh tứ giác ABCD là hình thang.

Xem đáp án » 13/07/2024 2,870

Câu 3:

Hình thang ABCD (AB // CD) có ACD^=BDC^. Chứng minh tứ giác ABCD là hình thang cân.

Xem đáp án » 13/07/2024 2,202

Câu 4:

Cho tứ giác ABCDAB = BCAC là tia phân giác của góc A. Chứng minh tứ giác ABCD là hình thang.

Xem đáp án » 13/07/2024 2,035

Câu 5:

Cho tam giác ABC vuông cân tại A. Vẽ ra phía ngoài của tam giác ABC một tam giác BCD vuông cân tại B. Tứ giác ABCD là hình gì? Vì sao?

Xem đáp án » 13/07/2024 1,663
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua