Câu hỏi:

13/07/2024 7,286

Cho tam giác ABC cân tại A, có hai đường cao là BE CD (D AB, E AC). Chứng minh tứ giác BDEC là hình thang cân.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC cân tại A, có hai đường cao là BE và CD (D ∈ AB, E ∈ AC). Chứng minh tứ giác BDEC là hình thang cân. (ảnh 1)

Do BE, CD là hai đường cao nên BE AC, CD AB.

Xét ∆BEC vuông tại E và ∆CDB vuông tại D, ta có:

BC là cạnh chung; ECB^=DBC^ (do ∆ABC cân tại A)

Do đó ∆BEC = ∆CDB (cạnh huyền – góc nhọn)

Suy ra EC = BD (hai cạnh tương ứng)

Mà AC = AB nên AC ‒ EC = AB ‒ BD, hay AE = AD

Do đó ∆ADE cân tại A suy ra ADE^=AED^=180°A^2. (1)

∆ABC cân tại A nên ABC^=ACB^=180°A^2. (2)

Từ (1) và (2) suy ra ADE^=ABC^

Mà hai góc này ở vị trí đồng vị nên DE // BC

Suy ra tứ giác BDEC là hình thang.

Hình thang BDECDBC^=ECB^ nên là hình thang cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. Chứng minh tứ giác MNBC là hình thang cân.

Xem đáp án » 13/07/2024 8,917

Câu 2:

Tứ giác ABCD có A^+D^=B^+C^. Chứng minh tứ giác ABCD là hình thang.

Xem đáp án » 13/07/2024 2,684

Câu 3:

Hình thang ABCD (AB // CD) có ACD^=BDC^. Chứng minh tứ giác ABCD là hình thang cân.

Xem đáp án » 13/07/2024 2,022

Câu 4:

Cho tứ giác ABCDAB = BCAC là tia phân giác của góc A. Chứng minh tứ giác ABCD là hình thang.

Xem đáp án » 13/07/2024 1,944

Câu 5:

Cho tam giác ABC vuông cân tại A. Vẽ ra phía ngoài của tam giác ABC một tam giác BCD vuông cân tại B. Tứ giác ABCD là hình gì? Vì sao?

Xem đáp án » 13/07/2024 1,532

Bình luận


Bình luận