Câu hỏi:

13/07/2024 3,502

Tính chiều cao của hình thang cân ABCD biết rằng cạnh bên BC = 25 cm và các cạnh đáy AB = 10 cm, CD = 24 cm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Tính chiều cao của hình thang cân ABCD biết rằng cạnh bên BC = 25 cm và các cạnh đáy AB = 10 cm, CD = 24 cm. (ảnh 1)

Từ A, B lần lượt kẻ AH, BK vuông góc với CD (H, K CD).

Xét tứ giác ABKH có: AB // HK (vì AB // CD do ABCD là hình thang), AH // BK (cùng vuông góc với CD).

Do đó, tứ giác ABKH là hình bình hành. Suy ra HK = AB = 10 cm.

Xét ∆ADH vuông tại H và ∆BCK vuông tại K, ta có:

D^=C^; AD = BC (do ABCD là hình thang cân).

Do đó ∆ADH = BCK (cạnh huyền – góc nhọn).

Suy ra DH = CK.

Ta có DH + HK + CK = CD hay 10 + 2CK = 24, suy ra CK = 7 (cm).

Xét ∆BCK vuông tại K, ta có

BC2 = BK2 + CK2 hay 252 = BK2 + 72

Do đó BK2 = 252 – 72 = 576.

Suy ra BK=576=24 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD. Gọi DE, BK lần lượt là đường phân giác của hai góc ADB, DBC (E ∈ AB, K ∈ CD). a) Chứng minh DE // BK. b) Giả sử DE ⊥ AB. Chứng minh DA = DB. c) Trong trường hợp DE ⊥ AB, tìm số đo của   để tứ giác DEBK là hình vuông. (ảnh 1)

a) Ta có ABCD là hình bình hành nên AD // BC.

Suy ra ADB^=DBC^ (hai góc so le trong).

Do đó ADB^2=DBC^2

Suy ra EDB^=KBD^ (do DE, BK lần lượt là đường phân giác của ADB^ DBC^)

Mà hai góc này ở vị trí so le trong nên DE // BK.

Vậy DE // BK.

b) Xét ∆DABDE vừa là đường cao vừa là đường phân giác, suy ra ∆DAB cân tại D.

Khi đó, DA = DB.

c) Xét tứ giác DEBK có: DE // BK, BE // DK.

Suy ra DEBK là hình bình hành.

E^=90° nên DEBK là hình chữ nhật.

Để tứ giác DEBK là hình vuông thì DE = EB.

Mà ∆DAB cân tại D nên DE vừa là đường cao vừa là trung tuyến của ∆DAB.

Suy ra DE=EB=AB2, suy ra ∆DAB vuông tại D hay ADB^=90°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP