Câu hỏi:

13/07/2024 3,157

Tính chiều cao của hình thang cân ABCD biết rằng cạnh bên BC = 25 cm và các cạnh đáy AB = 10 cm, CD = 24 cm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Tính chiều cao của hình thang cân ABCD biết rằng cạnh bên BC = 25 cm và các cạnh đáy AB = 10 cm, CD = 24 cm. (ảnh 1)

Từ A, B lần lượt kẻ AH, BK vuông góc với CD (H, K CD).

Xét tứ giác ABKH có: AB // HK (vì AB // CD do ABCD là hình thang), AH // BK (cùng vuông góc với CD).

Do đó, tứ giác ABKH là hình bình hành. Suy ra HK = AB = 10 cm.

Xét ∆ADH vuông tại H và ∆BCK vuông tại K, ta có:

D^=C^; AD = BC (do ABCD là hình thang cân).

Do đó ∆ADH = BCK (cạnh huyền – góc nhọn).

Suy ra DH = CK.

Ta có DH + HK + CK = CD hay 10 + 2CK = 24, suy ra CK = 7 (cm).

Xét ∆BCK vuông tại K, ta có

BC2 = BK2 + CK2 hay 252 = BK2 + 72

Do đó BK2 = 252 – 72 = 576.

Suy ra BK=576=24 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC cân tại A có BC = 6 cm. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. a) Tính độ dài MN. Chứng minh MBCN là hình thang cân. b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành. c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật. d) Chứng minh AMPN là hình thoi. (ảnh 1)

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC (giả thiết).

Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có:

MN // BC  và MN=12BC=126=3 (cm).

Xét tứ giác MNCB có MN // BC (chứng minh trên).

Do đó, tứ giác MNCB là hình thang có hai đáy là MN, BC.

Ta lại có B^=C^ (do ∆ABC cân tại A).

Suy ra hình thang MNCB là hình thang cân.

b) Xét tứ giác ABCK có:

N là trung điểm của AC (giả thiết);

N là trung điểm của BK (K là điểm đối xứng của B qua N).

Do đó, tứ giác ABCK là hình bình hành.

c) Xét tứ giác AHBP có:

M là trung điểm của AB (giả thiết);

M là trung điểm của HP (H là điểm đối xứng của P qua M).

Do đó, tứ giác AHBP là hình bình hành (1)

∆ABC cân tại A có AP là đường trung tuyến ứng với cạnh BC nên cũng đồng thời là đường cao

Do đó AP ⊥ BC  tại P, suy ra APB^=90° (2)

Từ (1) và (2) suy ra AHBP là hình chữ nhật.

d) ∆ABC có M, P lần lượt là trung điểm của AB, BC (giả thiết).

Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có:

MP // AC và MP=12AC hay MP // AN (N ∈ AC) và MP=AN=12AC.

Xét tứ giác AMPN có:

MP = AN (chứng minh trên);

MP // AN (chứng minh trên).

Do đó, tứ giác AMPN là hình bình hành (3)

Mặt khác, AM=12AB,AN=12AC và AB = AC nên AM = AN (4)

Từ (3) và (4) suy ra AMPN là hình thoi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay