Câu hỏi:
13/07/2024 2,207Cho tam giác ABC cân tại A có BC = 6 cm. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a) Tính độ dài MN. Chứng minh MBCN là hình thang cân.
b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành.
c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật.
d) Chứng minh AMPN là hình thoi.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) ∆ABC có M, N lần lượt là trung điểm của AB, AC (giả thiết).
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có:
MN // BC và (cm).
Xét tứ giác MNCB có MN // BC (chứng minh trên).
Do đó, tứ giác MNCB là hình thang có hai đáy là MN, BC.
Ta lại có (do ∆ABC cân tại A).
Suy ra hình thang MNCB là hình thang cân.
b) Xét tứ giác ABCK có:
N là trung điểm của AC (giả thiết);
N là trung điểm của BK (K là điểm đối xứng của B qua N).
Do đó, tứ giác ABCK là hình bình hành.
c) Xét tứ giác AHBP có:
M là trung điểm của AB (giả thiết);
M là trung điểm của HP (H là điểm đối xứng của P qua M).
Do đó, tứ giác AHBP là hình bình hành (1)
∆ABC cân tại A có AP là đường trung tuyến ứng với cạnh BC nên cũng đồng thời là đường cao
Do đó AP ⊥ BC tại P, suy ra (2)
Từ (1) và (2) suy ra AHBP là hình chữ nhật.
d) ∆ABC có M, P lần lượt là trung điểm của AB, BC (giả thiết).
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có:
MP // AC và hay MP // AN (N ∈ AC) và .
Xét tứ giác AMPN có:
MP = AN (chứng minh trên);
MP // AN (chứng minh trên).
Do đó, tứ giác AMPN là hình bình hành (3)
Mặt khác, và AB = AC nên AM = AN (4)
Từ (3) và (4) suy ra AMPN là hình thoi.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chữ nhật ABCD có AB = 2BC. Gọi I là trung điểm của AB và K là trung điểm của CD. Chứng minh:
a) AIKD và BIKC là hình vuông.
b) và
Câu 2:
Cho hình bình hành ABCD. Gọi DE, BK lần lượt là đường phân giác của hai góc (E ∈ AB, K ∈ CD).
a) Chứng minh DE // BK.
b) Giả sử DE ⊥ AB. Chứng minh DA = DB.
c) Trong trường hợp DE ⊥ AB, tìm số đo của để tứ giác DEBK là hình vuông.
Câu 3:
Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm M và N sao cho BM = DN.
a) Chứng minh tứ giác AMCN là hình bình hành.
b) Xác định vị trí của điểm M để tia AM cắt BC tại trung điểm của BC.
Câu 4:
Ba số nào sau đây không thể là độ dài ba cạnh của một tam giác vuông?
A. 3; 4; 5.
B. 5; 12; 13.
C. 7; 24; 25.
D. 9; 40; 42.
Câu 5:
Cho hình bình hành MNPQ có O là giao điểm của hai đường chéo. Biết MN = 6, OM = 3, ON = 4. Độ dài của MP, NQ, PQ lần lượt là
A. 6; 8; 6.
B. 8; 6; 6.
C. 6; 6; 8.
D. 8; 8; 6.
Câu 6:
Cho hình thang cân ABCD có AB // CD, DB là tia phân giác của góc D, DB ⊥ BC. Biết AB = 4 cm. Tính chu vi hình thang đó.
về câu hỏi!