Câu hỏi:

13/07/2024 4,333

Cho tam giác ABC cân tại ABC = 6 cm. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.

a) Tính độ dài MN. Chứng minh MBCN là hình thang cân.

b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành.

c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật.

d) Chứng minh AMPN là hình thoi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC cân tại A có BC = 6 cm. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. a) Tính độ dài MN. Chứng minh MBCN là hình thang cân. b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành. c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật. d) Chứng minh AMPN là hình thoi. (ảnh 1)

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC (giả thiết).

Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có:

MN // BC  và MN=12BC=126=3 (cm).

Xét tứ giác MNCB có MN // BC (chứng minh trên).

Do đó, tứ giác MNCB là hình thang có hai đáy là MN, BC.

Ta lại có B^=C^ (do ∆ABC cân tại A).

Suy ra hình thang MNCB là hình thang cân.

b) Xét tứ giác ABCK có:

N là trung điểm của AC (giả thiết);

N là trung điểm của BK (K là điểm đối xứng của B qua N).

Do đó, tứ giác ABCK là hình bình hành.

c) Xét tứ giác AHBP có:

M là trung điểm của AB (giả thiết);

M là trung điểm của HP (H là điểm đối xứng của P qua M).

Do đó, tứ giác AHBP là hình bình hành (1)

∆ABC cân tại A có AP là đường trung tuyến ứng với cạnh BC nên cũng đồng thời là đường cao

Do đó AP ⊥ BC  tại P, suy ra APB^=90° (2)

Từ (1) và (2) suy ra AHBP là hình chữ nhật.

d) ∆ABC có M, P lần lượt là trung điểm của AB, BC (giả thiết).

Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có:

MP // AC và MP=12AC hay MP // AN (N ∈ AC) và MP=AN=12AC.

Xét tứ giác AMPN có:

MP = AN (chứng minh trên);

MP // AN (chứng minh trên).

Do đó, tứ giác AMPN là hình bình hành (3)

Mặt khác, AM=12AB,AN=12AC và AB = AC nên AM = AN (4)

Từ (3) và (4) suy ra AMPN là hình thoi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD. Gọi DE, BK lần lượt là đường phân giác của hai góc ADB, DBC (E ∈ AB, K ∈ CD). a) Chứng minh DE // BK. b) Giả sử DE ⊥ AB. Chứng minh DA = DB. c) Trong trường hợp DE ⊥ AB, tìm số đo của   để tứ giác DEBK là hình vuông. (ảnh 1)

a) Ta có ABCD là hình bình hành nên AD // BC.

Suy ra ADB^=DBC^ (hai góc so le trong).

Do đó ADB^2=DBC^2

Suy ra EDB^=KBD^ (do DE, BK lần lượt là đường phân giác của ADB^ DBC^)

Mà hai góc này ở vị trí so le trong nên DE // BK.

Vậy DE // BK.

b) Xét ∆DABDE vừa là đường cao vừa là đường phân giác, suy ra ∆DAB cân tại D.

Khi đó, DA = DB.

c) Xét tứ giác DEBK có: DE // BK, BE // DK.

Suy ra DEBK là hình bình hành.

E^=90° nên DEBK là hình chữ nhật.

Để tứ giác DEBK là hình vuông thì DE = EB.

Mà ∆DAB cân tại D nên DE vừa là đường cao vừa là trung tuyến của ∆DAB.

Suy ra DE=EB=AB2, suy ra ∆DAB vuông tại D hay ADB^=90°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay