Câu hỏi:
13/07/2024 18,034
Cho hình chữ nhật ABCD có AB = 2BC. Gọi I là trung điểm của AB và K là trung điểm của CD. Chứng minh:
a) AIKD và BIKC là hình vuông.
b) và
Cho hình chữ nhật ABCD có AB = 2BC. Gọi I là trung điểm của AB và K là trung điểm của CD. Chứng minh:
a) AIKD và BIKC là hình vuông.
b) và
Câu hỏi trong đề: Giải SBT Toán 8 CTST Bài tập cuối chương 3 có đáp án !!
Quảng cáo
Trả lời:

Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có ABCD là hình bình hành nên AD // BC.
Suy ra (hai góc so le trong).
Do đó
Suy ra (do DE, BK lần lượt là đường phân giác của và )
Mà hai góc này ở vị trí so le trong nên DE // BK.
Vậy DE // BK.
b) Xét ∆DAB có DE vừa là đường cao vừa là đường phân giác, suy ra ∆DAB cân tại D.
Khi đó, DA = DB.
c) Xét tứ giác DEBK có: DE // BK, BE // DK.
Suy ra DEBK là hình bình hành.
Mà nên DEBK là hình chữ nhật.
Để tứ giác DEBK là hình vuông thì DE = EB.
Mà ∆DAB cân tại D nên DE vừa là đường cao vừa là trung tuyến của ∆DAB.
Suy ra suy ra ∆DAB vuông tại D hay
Lời giải

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC (giả thiết).
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có:
MN // BC và (cm).
Xét tứ giác MNCB có MN // BC (chứng minh trên).
Do đó, tứ giác MNCB là hình thang có hai đáy là MN, BC.
Ta lại có (do ∆ABC cân tại A).
Suy ra hình thang MNCB là hình thang cân.
b) Xét tứ giác ABCK có:
N là trung điểm của AC (giả thiết);
N là trung điểm của BK (K là điểm đối xứng của B qua N).
Do đó, tứ giác ABCK là hình bình hành.
c) Xét tứ giác AHBP có:
M là trung điểm của AB (giả thiết);
M là trung điểm của HP (H là điểm đối xứng của P qua M).
Do đó, tứ giác AHBP là hình bình hành (1)
∆ABC cân tại A có AP là đường trung tuyến ứng với cạnh BC nên cũng đồng thời là đường cao
Do đó AP ⊥ BC tại P, suy ra (2)
Từ (1) và (2) suy ra AHBP là hình chữ nhật.
d) ∆ABC có M, P lần lượt là trung điểm của AB, BC (giả thiết).
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có:
MP // AC và hay MP // AN (N ∈ AC) và .
Xét tứ giác AMPN có:
MP = AN (chứng minh trên);
MP // AN (chứng minh trên).
Do đó, tứ giác AMPN là hình bình hành (3)
Mặt khác, và AB = AC nên AM = AN (4)
Từ (3) và (4) suy ra AMPN là hình thoi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.