Câu hỏi:
13/07/2024 2,971
Cho hình thang cân ABCD có AB // CD, DB là tia phân giác của góc D, DB ⊥ BC. Biết AB = 4 cm. Tính chu vi hình thang đó.
Cho hình thang cân ABCD có AB // CD, DB là tia phân giác của góc D, DB ⊥ BC. Biết AB = 4 cm. Tính chu vi hình thang đó.
Câu hỏi trong đề: Giải SBT Toán 8 CTST Bài tập cuối chương 3 có đáp án !!
Quảng cáo
Trả lời:

Ta có: AB // CD nên (hai góc so le trong).
DB là tia phân giác của góc D (giả thiết) nên
Do đó
Suy ra ∆ABD cân tại A, suy ra AB = AD = 4 cm.
Mà ABCD là hình thang cân, nên BC = AD = 4 cm.
Gọi M là giao điểm của AD và BC.
Xét ∆MDC có DB là tia phân giác của góc D và DB cũng là đường cao hạ từ đỉnh D nên ∆MDC là tam giác cân, do đó DM = DC.
Mặt khác: ∆MDC có (do ABCD là hình thang cân) nên ∆MDC cân tại M, do đó DM = CM.
Suy ra DM = DC = CM = 2BC = 2.4 = 8 cm.
Vậy chu vi hình thang là:
AB + BC + CD + DA = 4 + 4 + 8 + 4 = 20 cm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có ABCD là hình bình hành nên AD // BC.
Suy ra (hai góc so le trong).
Do đó
Suy ra (do DE, BK lần lượt là đường phân giác của và )
Mà hai góc này ở vị trí so le trong nên DE // BK.
Vậy DE // BK.
b) Xét ∆DAB có DE vừa là đường cao vừa là đường phân giác, suy ra ∆DAB cân tại D.
Khi đó, DA = DB.
c) Xét tứ giác DEBK có: DE // BK, BE // DK.
Suy ra DEBK là hình bình hành.
Mà nên DEBK là hình chữ nhật.
Để tứ giác DEBK là hình vuông thì DE = EB.
Mà ∆DAB cân tại D nên DE vừa là đường cao vừa là trung tuyến của ∆DAB.
Suy ra suy ra ∆DAB vuông tại D hay
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.