Câu hỏi:

29/10/2023 1,480

Giả thiết nào dưới đây chứng tỏ rằng hai tam giác đồng dạng?

a) Ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia.

b) Hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và có một cặp góc bằng nhau.

c) Hai góc của tam giác này bằng hai góc của tam giác kia.

d) Hai cạnh của tam giác này bằng hai cạnh của tam giác kia.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả thiết a) suy ra hai tam giác đồng dạng theo trường hợp cạnh – cạnh – cạnh.

Giả thiết c) suy ra hai tam giác đồng dạng theo trường hợp góc – góc.

Các giả thiết b) và d) không suy ra hai tam giác đồng dạng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho AM, BN, CP là các đường trung tuyến của tam giác ABC. Cho A'M', B'N', C'P' là các đường trung tuyến của tam giác A'B'C'. Biết rằng ΔA′B′C′  ΔABC.

Chứng minh rằng A'M'AM=B'N'BN=C'P'CP.

Xem đáp án » 29/10/2023 5,648

Câu 2:

Có hai chiếc cột dựng thẳng đứng trên mặt đất với chiều cao lần lượt là 3 m và 2 m. Người ta nối hai sợi dây từ đỉnh cột này đến chân cột kia và hai sợi dây cắt nhau tại một điểm (H.9.25). Hãy tính độ cao h của điểm đó so với mặt đất.

Có hai chiếc cột dựng thẳng đứng trên mặt đất với chiều cao lần lượt là 3 m và 2 m. Người ta nối hai sợi dây (ảnh 1)

Xem đáp án » 29/10/2023 3,739

Câu 3:

Cho tam giác ABC có AB = 12 cmAC = 15 cm. Trên các tia AB, AC lần lượt lấy các điểm M, N sao cho AM = 10 cmAN = 8 cm. Chứng minh rằng ΔABC  ΔANM.

Xem đáp án » 29/10/2023 3,056

Câu 4:

Cho hai tam giác đồng dạng. Tam giác thứ nhất có độ dài ba cạnh là 4 cm, 8 cm và 10 cm. Tam giác thứ hai có chu vi là 33 cm. Độ dài ba cạnh của tam giác thứ hai là bộ ba nào sau đây?

a) 6 cm, 12 cm, 15 cm.                         b) 8 cm, 16 cm, 20 cm.

c) 6 cm, 9 cm, 18 cm.                           d) 8 cm, 10 cm, 15 cm.

Xem đáp án » 29/10/2023 2,930

Câu 5:

Cho tam giác ABC có chu vi bằng 18 cm và tam giác DEF có chu vi bằng 27 cm. Biết rằng AB = 4 cm, BC = 6 cm, DE = 6 cm, FD = 12 cm. Chứng minh  ΔABC  ΔDEF.

Xem đáp án » 29/10/2023 2,413

Câu 6:

Cho ΔA'B'C' ΔABC. Trên tia đối của các tia CB, C'B' lần lượt lấy các điểm M, M' sao cho MCMB=M'C'M'B'. Chứng minh rằng  ΔA'B'M'  ΔABM.

Xem đáp án » 29/10/2023 1,810

Câu 7:

Cho góc BAC và các điểm M, N lần lượt trên các đoạn thẳng AB, AC sao cho ABN^=ACM^.

a) Chứng minh rằng ΔABN ∽ ΔACM.

Xem đáp án » 29/10/2023 1,647

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store