Trong các khẳng định sau, khẳng định nào đúng?
A. Hai tam giác đồng dạng thì bằng nhau.
B. Hai tam giác bằng nhau thì đồng dạng.
C. Hai tam giác bằng nhau thì không đồng dạng.
D. Hai tam giác cân thì luôn đồng dạng.
                                    
                                                                                                                        Trong các khẳng định sau, khẳng định nào đúng?
A. Hai tam giác đồng dạng thì bằng nhau.
B. Hai tam giác bằng nhau thì đồng dạng.
C. Hai tam giác bằng nhau thì không đồng dạng.
D. Hai tam giác cân thì luôn đồng dạng.
Câu hỏi trong đề: Giải SGK Toán 8 CTST Bài tập cuối chương 8 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Lời giải:
Đáp án đúng là: B
Hai tam giác bằng nhau thì đồng dạng với theo tỉ số k = 1.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:

a) Xét tam giác vuông ABH và CBA ta có:
\[\widehat B\] chung
Suy ra ΔABH ᔕ ΔCBA nên \[\frac{{AB}}{{BC}} = \frac{{BH}}{{AB}}\;\] hay AB2 = BH.BC
b) c) Tứ giác AEHF có 4 góc vuông suy ra AEHF là hình chữ nhật
Do đó \[\widehat {AEF} = \widehat {AEH}\]
ΔABH ᔕ ΔCBA nên \[\widehat {EAH} = \widehat {ACB}\]
Xét tam giác AEF và ACB ta có:
\[\widehat A\] chung
\[\widehat {EAH} = \widehat {ACB}\]
Suy ra ΔAEF ᔕ ΔACB (g.g) nên \[\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\;\] hay AE.AB = AF.AC
d) Xét tam giác vuông HNI và HFC ta có:
\[\widehat H\] chung
Suy ra ΔHNI ᔕ ΔHFC (g.g)
Nên \[\frac{{HN}}{{HF}} = \frac{{HI}}{{HC}}\;\] hay \[\frac{{HN}}{{HI}} = \frac{{HF}}{{HC}}\]
Xét tam giác HNF và HIC ta có:
\[\widehat H\] chung
\[\frac{{HN}}{{HI}} = \frac{{HF}}{{HC}}\]
Suy ra ΔHNF ᔕ ΔHIC (c.g.c).Lời giải
Lời giải:

a) Xét tam giác vuông ABM và ACN có:
\[\widehat A\] chung
Suy ra ΔABM ᔕ ΔACN (g.g)
Nên \[\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\;\] hay \[\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\]
Xét tam giác AMN và ABC ta có:
\[\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\]
\[\widehat A\] chung
Suy ra ΔAMN ᔕ ΔABC (c.g.c).
b) ΔAMN ᔕ ΔABC, AK là phân giác của \[\widehat {BAC}\]
Suy ra \[\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{AI}}{{AK}}\]
Xét tam giác AIM và AKB ta có:
\[\frac{{AM}}{{AB}} = \frac{{AI}}{{AK}}\]
\[\widehat {IAM} = \widehat {IAN}\] (vì AK là phân giác \[\widehat {BAC}\])
Suy ra ΔAIM ᔕ ΔAKB nên \[\frac{{IM}}{{KB}} = \frac{{AI}}{{AK}}\;\] (1)
Xét tam giác AIN và AKC ta có:
\[\frac{{AN}}{{AC}} = \frac{{AI}}{{AK}}\]
\[\widehat {IAM} = \widehat {IAN}\] (vì AK là phân giác \[\widehat {BAC}\])
Suy ra ΔAIN ᔕ ΔAKC nên \[\frac{{IN}}{{KC}} = \frac{{AI}}{{AK}}\;\] (2)
Từ (1) và (2) suy ra \[\frac{{IM}}{{KB}} = \frac{{IN}}{{KC}}\;\] hay \[\frac{{IM}}{{IN}} = \frac{{KB}}{{KC}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



 Nhắn tin Zalo
 Nhắn tin Zalo