Câu hỏi:
13/07/2024 18,721
Bóng của một căn nhà trên mặt đất có độ dài 6m. Cùng thời điểm đó, một cọc sắt cao 2m cắm vuông góc với mặt đất có bóng dài 1,5 m (Hình 4). Tính chiều cao ngôi nhà.

Câu hỏi trong đề: Giải SGK Toán 8 CTST Bài tập cuối chương 8 có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
Vì cùng một thời điểm tia sáng tạo với mặt đất một góc bằng nhau nên\[\widehat C = \widehat E\].
Xét hai tam giác vuông ABC và tam giác MNE có: \[\widehat C = \widehat E\]
Do đó ΔABC ᔕ ΔMNE (g.g)
Suy ra: \[\frac{{AC}}{{ME}} = \frac{{AB}}{{MN}}\]
Thay số: \[\frac{6}{{1,5}} = \frac{{AB}}{{2\;}}\] suy ra AB = 8 (m)
Vậy chiều cao ngôi nhà là 8 m.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Xét tam giác vuông ABH và CBA ta có:
\[\widehat B\] chung
Suy ra ΔABH ᔕ ΔCBA nên \[\frac{{AB}}{{BC}} = \frac{{BH}}{{AB}}\;\] hay AB2 = BH.BC
b) c) Tứ giác AEHF có 4 góc vuông suy ra AEHF là hình chữ nhật
Do đó \[\widehat {AEF} = \widehat {AEH}\]
ΔABH ᔕ ΔCBA nên \[\widehat {EAH} = \widehat {ACB}\]
Xét tam giác AEF và ACB ta có:
\[\widehat A\] chung
\[\widehat {EAH} = \widehat {ACB}\]
Suy ra ΔAEF ᔕ ΔACB (g.g) nên \[\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\;\] hay AE.AB = AF.AC
d) Xét tam giác vuông HNI và HFC ta có:
\[\widehat H\] chung
Suy ra ΔHNI ᔕ ΔHFC (g.g)
Nên \[\frac{{HN}}{{HF}} = \frac{{HI}}{{HC}}\;\] hay \[\frac{{HN}}{{HI}} = \frac{{HF}}{{HC}}\]
Xét tam giác HNF và HIC ta có:
\[\widehat H\] chung
\[\frac{{HN}}{{HI}} = \frac{{HF}}{{HC}}\]
Suy ra ΔHNF ᔕ ΔHIC (c.g.c).Lời giải
Lời giải:
a) Xét tam giác vuông ABM và ACN có:
\[\widehat A\] chung
Suy ra ΔABM ᔕ ΔACN (g.g)
Nên \[\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\;\] hay \[\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\]
Xét tam giác AMN và ABC ta có:
\[\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\]
\[\widehat A\] chung
Suy ra ΔAMN ᔕ ΔABC (c.g.c).
b) ΔAMN ᔕ ΔABC, AK là phân giác của \[\widehat {BAC}\]
Suy ra \[\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{AI}}{{AK}}\]
Xét tam giác AIM và AKB ta có:
\[\frac{{AM}}{{AB}} = \frac{{AI}}{{AK}}\]
\[\widehat {IAM} = \widehat {IAN}\] (vì AK là phân giác \[\widehat {BAC}\])
Suy ra ΔAIM ᔕ ΔAKB nên \[\frac{{IM}}{{KB}} = \frac{{AI}}{{AK}}\;\] (1)
Xét tam giác AIN và AKC ta có:
\[\frac{{AN}}{{AC}} = \frac{{AI}}{{AK}}\]
\[\widehat {IAM} = \widehat {IAN}\] (vì AK là phân giác \[\widehat {BAC}\])
Suy ra ΔAIN ᔕ ΔAKC nên \[\frac{{IN}}{{KC}} = \frac{{AI}}{{AK}}\;\] (2)
Từ (1) và (2) suy ra \[\frac{{IM}}{{KB}} = \frac{{IN}}{{KC}}\;\] hay \[\frac{{IM}}{{IN}} = \frac{{KB}}{{KC}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.